Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo_stics

Agroclim STICS


Analysis and modeling of cover crop emergence: Accuracy of a static model and the dynamic STICS soil-crop model

08 January 2018

Tribouillois, H. ; Constantin, J. ; Justes, E. (2018). European Journal of Agronomy, 93 : 73-81.

Cover crops are increasingly used in agriculture to provide a variety of ecosystem services (e.g. reducing nitrogen leaching, storing carbon in soils) during fallow periods, but it can be challenging to successfully establish them in summer, when water availability may be low. Thus, it is crucial to better quantify, understand and predict the emergence date of a variety of cover crops from multiple contexts in impact assessment studies. The objectives of this study were to 1) analyze variability in emergence dynamics among cover crops grown in fields, 2) identify variables that influence emergence the most and use them to develop a simple model to predict emergence date and 3) calibrate the STICS model to improve its predictions of cover crop emergence. STICS was chosen because it is a dynamic soil-plant model widely validated in the literature for simulating the production of cover crop services. We analyzed emergence dynamics of ten cover crop species sown under a variety of soil, climate and sowing conditions from 18 experimental sites across France. We developed and independently evaluated a static model based on these data to predict the number of days until emergence. We then calibrated STICS using the same data. Results revealed a mean emergence duration of 12 days for all species, but with high variability among experimental sites and years. The simple static model contained only three variables, with the number of consecutive days without significant water input after sowing the most significant. Overall, both the model and STICS predicted emergence date well in the calibration and validation datasets. Accurate prediction of soil moisture in the seedbed and soil water balance is a key factor to accurately predict cover crop emergence. Accurately predicting emergence of cover crops in crop models will help to assess the former’s ability to provide ecosystem services in cropping systems in current and future climates.

Site :