Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo_stics

Agroclim STICS


Analyzing ecosystem services in apple orchards using the STICS model

08 March 2018

C. Demestihas, D.Plénet, M.Génard, I.Garcia de Cortazar-Atauri, M. Launay, D.Ripoche, N. Beaudoin, S. Simon, M. charreyron, C. Raynal, F. Lescourret. (2018). European Journal of Agrnomy

Fruit tree production faces the major challenge of ensuring maximal productivity with due consideration for the environment and human health. The increasingly recognized concept of ecosystem service could help to address this duality. In this paper, we propose an analytical framework based on a soil crop model to investigate how agricultural management and pedoclimatic conditions affect the joint production of marketed and non-marketed ecosystem services through underlying ecosystem functions in apple orchards. The ecosystem services considered on an annual scale were soil nitrogen availability, climate regulation, water regulation and fruit production. Ecosystem functions and services were described by specific indicators that were quantified using the STICS soil crop model. This model was parameterized using data collected on two experimental apple orchard sites under conventional and low-input or organic management in southeastern France. The interdependencies between environmental components, cultural operations and ecosystem functions were dynamically integrated by the model and highlighted significant interactions between the indicators of ecosystem services. Thus, the service indicators soil organic nitrogen variation and the prevention of nitrogen denitrification and of leaching were positively correlated and in conflict with soil mean nitrate concentration and mean soil humidity. They were also linked negatively to nitrogen mineralization enhanced by irrigation and positively to soil carbon sequestration impacted by fertilization; these two functions were impacted by soil conditions. Yield and carbon sequestration presented a strong synergy and were positively correlated to nitrogen absorption increased by mineral fertilization. Globally, nitrogen fertilization management and planting density were particularly important for the delivery of multiple ecosystem services, but soil and climate effects were far from negligible, especially for nitrogen and water-related services. The ecosystem service profiles of the studied cropping systems were diversified, with contrasted profiles showing high yield and carbon sequestration but low prevention of nitrogen denitrification and of nitrogen leaching, and more balanced profiles. The STICS crop model made it possible to quantify and analyze profiles of ecosystem services and should be helpful in instrumenting the dialogue between fruit growers and other stakeholders by simulating scenarios to optimize multiple services. However, it has to be improved to address the impact of grass cover on soil functions and the long-term functioning of apple orchards.

Site :