Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Plant pathology unit - INRA AVIGNON

Pathologie vegetale

Zone de texte éditable et éditée et rééditée

Aerial dissemination

Pseudomonas syringae: a travelling bacterium

The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. Morris, C.E., et al. 2008. The ISME Journal 2: 321-334.

© Morris C.E. INRAE PACA

The objective of modelling large-scale dissemination of Pseudomonas syringae was to build a predictive model of epidemic risk of in France.

A model is under development to estimate the connectivity of geographic sites based on air mass trajectories that bring rainfall (in relation with the life history of the bacterium with the water cycle). This will be compared to the history of spread of kiwifruit canker due to P. syringae that emerged in France in 2010.

The importance of the air mass trajectory was shown for Pseudomonas syringae in precipitation (88 rain and snow samples collected in southeast and central France). Main results are:

  • the occurrence of P. syringae in precipitation was correlated with the chemical characteristics of the precipitation (conductivity, pH) as well as the associated air mass trajectory
  • the structure of the P. syringae population consisted of three distinct genetic groups related to the location and type of precipitation in which the sample came from
  • the phenotypic characteristics of strains (ice nucleation activity, traits related to pathogenic potential) differed if they were collected form snow or rain.

In contrast, the presence of B. cinerea in these same precipitation events was indifferent to the trajectory of the air mass and there was no difference between rain and snow in the aggressiveness of the strains of B. cinerea that they carried. This striking contrast illustrates the specificity of each model and illustrates the interest in such comparative studies of different models as a means to highlight this specificity.

Monteil, C., Bardin, M., Morris, C. E. 2014. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME Journal, 8 (11), 2290-2304. DOI : 10.1038/ismej.2014.55

Monteil, C., Bardin, M., Morris, C. E. 2014. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME Journal, 8 (11), 2290-2304. DOI : 10.1038/ismej.2014.55