Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Plant pathology unit - INRA AVIGNON

Pathologie vegetale

Zone de texte éditable et éditée et rééditée

Towards the design of innovative control methods

In collaboration with Nathalie Boissot (INRAE-GAFL Montfavet) I am interested in the coupling between genetic control and cultural practices that reduce bioaggressors in a perspective of sustainability.
This axis of research focuses on the major gene Vat, which confers resistance to colonization by Aphis gossypii and resistance to viruses transmitted by these aphids (Boissot et al., 2016). In the field, this results in a significant reduction in outbreaks of CABYV, a virus transmitted mainly by Aphis gossypii in the persistent mode, but ineffectiveness on outbreaks of WMV, a virus transmitted by other aphid species in the non-persistent mode (Schoeny et al. 2017)

The major gene Vat confers resistance to colonization by Aphis gossypii and resistance to viruses transmitted by these aphids

Therefore, the use of Vat is usually coupled with aphicide treatments to limit viral transmission by the non-colonizing "visitor" aphids of melon crops. However, the gradual reduction in the use of plant protection products in crop protection imposed by the evolution of the legislation leads to the search for new strategies to accompany genetic control for the management of bio-aggressors.

The hypothesis we tested is that the implementation of flower strips near to the crop can contribute to the regulation of aphid populations and/or their viruliferous potential, thus increasing the effectiveness and durability of resistance mediated by the Vat gene.
Large-scale experiments to test the effect of the combination of Vat x field margin management (in particular bare soil and flower strips) were conducted for 5 years in Avignon.
Flower strips sown with a mix of these five plant species (cornflower, grass pea, sainfoin, salad burnet and sweet marjoram) displayed a flowering continuum likely to provide a food resource to natural enemies throughout the growing season. Their potential to host/enhance natural enemies was compared to those of bare soil. Most generalist and specialist predators analyzed responded positively to the floral resources displayed. In particular, coccinellid and syrphid fluxes were significantly enhanced near flower margins.
We also showed that flower strips could enhance Vat efficiency to limit CABYV and WMV epidemics.

Implementation of flower strips near to the crop can contribute to the regulation of aphid populations and/or their viruliferous potential, thus increasing the effectiveness and durability of resistance mediated by the Vat gene.

Another promising area of research concerns techniques that disrupt the installation of pests in crops, including the use of repellent plants. Recent research shows that aromatic plants such as rosemary or French marigold disturb the fecundity and nutritional behaviour of Myzus persicae on pepper (Dardouri et al. 2019; Dardouri et al., 2021).
An assessment of the effect of these service plants on the acquisition and inoculation of persistent and non-persistent viruses is currently underway as part of the MultiServ project.

Aromatic plants repellent towards aphids : (A) rosemary (Rosmarinus officinalis), (B) French marigold (Tagetes patula nana)

Aromatic plants repellent towards aphids : (A) rosemary (Rosmarinus officinalis), (B) French marigold (Tagetes patula nana)

 Regardless of the strategies considered (chemical, cultural, biological, etc.), vector control remains a challenge due in particular to insufficient knowledge of the dynamics of arrival of vectors and the proportion of them carrying viruses (viruliferous).
As part of the BEYOND project we will develop molecular tools (qRT-PCR) allowing us to detect/quantify the presence of viruses in their vectors in order to be able to characterize the arrival of viruliferous vectors likely to initiate viral epidemics.

  • Boissot, N., Schoeny, A., Vanlerberghe-Masutti, F. (2016). Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects. Frontiers in Plant Science, 7:1420, 1-18. DOI: 10.3389/fpls.2016.01420 HAL INRAE-01512038
  • Dardouri, T., Gomez, L., Ameline, A., Costagliola, G., Schoeny, A., Gautier, H. (2021). Non‐host volatiles disturb the feeding behavior and reduce the fecundity of the green peach aphid, Myzus persicae. Pest Management Science, 77, 1705-1713. DOI:10.1002/ps.6190 HAL INRAE-03015172
  • Dardouri, T., Gomez, L., Schoeny, A., Costagliola, G., Gautier, H. (2019). Behavioural response of green peach aphid Myzus persicae (Sulzer) to volatiles from different rosemary (Rosmarinus officinalis L.) clones. Agricultural and Forest Entomology, 21 (3), 336-345. DOI: 10.1111/afe.12336 HAL INRAE-02267846
  • Schoeny, A., Desbiez, C., Millot, P., Wipf-Scheibel, C., Nozeran, K., Gognalons, P., Lecoq, H., Boissot, N. (2017). Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Research, 241, 105-115. DOI: 10.1016/j.virusres.2017.05.024 HAL INRAE-01535203 
  • Schoeny, A., Lauvernay, A., Lambion, J., Mazzia, C., Capowiez, Y. (2019). The beauties and the bugs: A scenario for designing flower strips adapted to aphid management in melon crops. Biological Control, 136, 103986, 1-10. DOI: 10.1016/j.biocontrol.2019.05.005 HAL INRAE-02619746