Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie

Purpose

Shelf life

CAS and PHP session cookies

Login credentials, session security

Session

Tarteaucitron

Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie

Purpose

Shelf life

atid

Trace the visitor's route in order to establish visit statistics.

13 months

atuserid

Store the anonymous ID of the visitor who starts the first time he visits the site

13 months

atidvisitor

Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at cil-dpo@inrae.fr or by post at :

INRAE

24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

http://www.paca.inra.fr/institut-sophia-agrobiotech_eng/

BONCOMPAGNI Éric

MCU HC- Univ. Côte d'Azur - Lecturer (UCA) - HDR

BONCOMPAGNI Éric
© inra
Molecular analysis of nodule senescence and development of new cellular tools to analyze the symbiotic nitrogen fixing interaction in vivo.

Research:

In order to better understand the  nitrogen fixing symbiosis, we have developed new cellular tools. In this context, multiple probes analyzed using confocal microscope imaging were developed and used in nitrogen fixing nodules. PBS pH was measured in vitro during the whole symbiotic process using ratiometric fluorescent probe. This analysis showed that nitrogen fixing zone maturation goes with the acidification of the peribacteroid  space in the nitrogen-fixing organite, the symbiosome (Pierre et al., 2013). The viability of bacteroids was analyzed during their differentiation and throughout the symbiotic interaction in vivo using nodule sections with the Live/Dead® BacLightTM probe. 

The symbiotic interaction between legumes and Rhizobiaceae leads to the formation of new root organs called nodules. Within the nodule, Rhizobiaceae differentiate into nitrogen-fixing bacteroids. However, this symbiotic interaction is time-limited as a result of the initiation of a senescence process, leading to a complete degradation of bacteroids and host plant cells. The increase in proteolytic activity is one of the key features of this process.

We analysed the involvement of two different classes of cysteine proteinases, MtCP6 and MtVPE, in the senescence process of Medicago truncatula nodules. Corresponding gene inductions were observed during both developmental and stress-induced nodule senescence (Kazmierczak et al., 2020; Yang et al., 2020). Both MtCP6 and MtVPE proteolytic activities were increased during stress-induced senescence. Down-regulation of both proteinases mediated by RNAi in the senescence zone delayed nodule senescence and increased nitrogen fixation, while their early expression promoted nodule senescence. Using green fluorescent protein fusions, in vivo confocal imaging showed that both proteinases accumulated in the vacuole of uninfected cells or the symbiosomes of infected cells. These data highlight the crucial role of MtCP6 and MtVPE in the onset of nodule senescence (Pierre et al., 2014; El Msehli et al., 2019).

In order to understand the regulation of MtCP6 expression in nodule undergoing a senescence program, a serial promoter deletion analysis of a cysteine protease gene MtCP6 wasconducted to identify cis regulatory element involved in the transcriptional regulation of nodule senescence of M. truncatula. Thereafter, identified cis-regulating region (67bp, NS) was validated to function in transcription activation in nodule zone III-IV. We have shown that tetramers of NS can increase the transcription into nodule senescence zone. In order to determine the significance of NS to the expression compared to the full promoter (-1,710bp), a functional analysis was conducted with deletion of NS from the full promoter and the analysis of a minimal promoter (-254bp). In addition, the potential roles of CAAT,WRKY and Dof motifs localized at 5’ of NS sequence was validated by site-specific mutagenesis. Finally, yeast one hybrid experiment was performed to identify transcription factors interacting with NS DNA fragment (Yang, 2020-PhD).

Main collaborations:

France : C. Bruand, LIPM Toulouse; P. Mergaert, ISV Gif-sur-Yvette; F. Frugier and V. Gruber, Gif-sur-Yvette; F. Di Carvalho-Niebel, LIPM Toulouse.

Foreign countries: P. Kalo, SzentGyörgyi Albert u., Hungaria.

Miscellaneous :

2016-2020 - Elected member at Research commission (CR) at Nice-Sophia Antipolis University.

2020-2024 - Elected member at Research commission (CACR) at Nice Côte d'azur University.

2020-2024 - Elected member at Disciplinary section

2018-2020 - Elected member at Epi-Revel editorial comity at Nice Côte d'azur University.

Financial support and collaborations :

ANR StayPink 2016-2020 (Saclay and Toulouse)

PHC 2014-2015 (Hungary)

CSI UNS 2018 (Toulouse)

Teaching:

December 2013, December 2016 and December 2019: 47h in Master 1 and 2, USTH Introduction to Plant Biotechnology, Hanoi, Vietnam.

Otherwises, 192 h/year at UCA (France). Courses on Plant Biology, Plant Physiology, Molecular Plant Biology, Microbiology.

Publication list:

2022
  • Sauviac, L., Rémy, A., Huault, E., Dalmasso, M., Kazmierczak, T., Jardinaud, M.-F., et al. (2022) A dual legume-rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. Plant, Cell & Environment, 1– 22. https://doi.org/10.1111/pce.14389
2020
  • Kazmierczak T.,Yang L., Boncompagni E., Meilhoc E., Frugier F., Frendo P., Bruand C., Gruber V. and Brouquisse R.(2020) Legume nodule senescence: a coordinated death mechanism between bacteria and plant cells. Advances in Botanical Research, 94, 181-212. DOI:10.1016/bs.abr.2019.09.013
  • Yang L., El Mselhi S., Benyamina S., Lambert A., Hopkins J., Cazareth J. Hérouart D., Smiti S.-A., Boncompagni E. and Frendo P. (2020). Glutathione Deficiency in Sinorhizobium meliloti Does Not Impair Bacteroid Differentiation But Induces Early Senescence. Frontiers in plant science. Frontiers in plant science. 11:137. doi: 10.3389/fpls.2020.00137
2019
  • El Msehli S., Lambert A., Hopkins J., Boncompagni E., Smiti-Aschi S., Hérouart D. and Frendo P. (2019) Physiological and genetic changes during natural senescence of root nodules in Medicago truncatula. Journal of plant nutrition and soil science, 182(3), 385-392 https://doi.org/10.1002/jpln.201800233
  • Hopkins J., Pierre O., Frendo P. and Boncompagni E. (2019) FYVE and PH protein domains present in MtZR1, a PRAF protein, modulate the development of roots and symbiotic root nodules of Medicago truncatula via potential phospholipids signalling. John Wiley & Sons, Inc. The model legume Medicago truncatula. Ed.: Frans J. de Bruijn. https://doi.org/10.1002/9781119409144.ch17
2018
  • Alloing, G.; Mandon, K.; Boncompagni, E.; Montrichard, F.; Frendo, P. (2018) Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants, 7, 182. doi.org/10.3390/antiox7120182
2017
  • BONCOMPAGNI E., ALLOING G., MANDON K. and FRENDO P. Synthesis and Roles of Glutathione and Homoglutathione in the Nitrogen-Fixing Symbiosis. Springer : Glutathione in plant growth, development and stress tolerance. Ed. : Mohammad Anwar Hossain, Mohammad Golam Mostofa, Pedro Diaz Vivancos, David J Burritt, Masayuki Fujita, and Lam-Son Phan Tran. Accepted.
  • Ribeiro CW, Baldacci-Cresp F, Pierre O, Larousse M, Benyamina S, Lambert A, Hopkins J, Castella C, Cazareth J, Alloing G, Boncompagni E, Couturier J, Mergaert P, Gamas P, Rouhier N, Montrichard F, Frendo P. (2017). Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1. Curr Biol 27(2):250-256. doi : 10.1016/j.cub.2016.11.013.
2014
  • Hopkins, J., Pierre, O., Kazmierczak, T., Gruber, V., Frugier, F., Clement, M., Frendo, P., Herouart, D., and Boncompagni, E. (2014). MtZr1, A Praf Protein, is Involved in the Development of Roots and Symbiotic Root-nodules in Medicago truncatula.Plant, Cell & Environment 37, 658-669 10.1111/pce.12185.
  • Pierre, O., Hopkins, J., Combier, M., Baldacci, F., Engler, G., Brouquisse, R., Hérouart, D., and Boncompagni, E. (2014). Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytologist. 202(3):849-63. DOI: 10.1111/nph.12717.
2013
  • Pierre, O., Engler, G., Hopkins, J., Brau, F., Boncompagni, E., and Hérouart, D. (2013). Peribacteriod space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell Environ. 36(11):2059-70
2012
  • Cam Y., Pierre O., Boncompagni E., Hérouart D., Meilhoc E. and Bruand C. (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytolologist,  196, 548–560.
2011
  • El Msehli S., Lambert A., Baldacci-Cresp F., Hopkins J., Boncompagni E., Smiti S.A., Hérouart D. and Frendo P. (2011) Crucial role of (homo)glutathione for nitrogen fixation in Medicago truncatula nodule. New Phytologist, 192: 496-506.
  • Haag AF, Balodan M, Sani M, Kerscher B, Pierre O, Longhi R, Boncompagni E, Herouart D, Staff E, Dall’angelo S, Kondorosi E, Zanda M, Mergaert P, and Ferguson GP (2011) Bacterial resistance to legume defensin peptides is essential for symbiosis. Plos Biology, Oct. 9 (10):e1001169. DOI: 10.1371/journal.pbio.1001169.
  • Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiology, 155: 1023-1036.
PH in nodule senescence

Fig 1: A- Nodulated Medicago truncatula plant; B- Slice of functional nodule. Scale: 500 µm; C- Activation of CP6 gene at the interface between symbiosis and senescence (Red = Gus detection); D- Bacteroid of S. meliloti (Syto® 9 fluorecence); E- Detection of low pH in peribacteroid space (green: LysoTracker®) and bacteroid (red:Syto® 9).

Root Nodule senescence

Fig 2: A- Nodule morphology (toluidine blue staining) of nodule depleted for CP6 or VPE genes. Scale: 250µm. B- Nitrogen fixation of 6 weeks post-inoculation MtCP6-RNAi and MtVPE-RNAi nodules (mean + SD). Differences are significant: *, P<0.05; **, P<0.01.