Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

Insect Defence

Insect Defence : genomics and adaptations
Insects Defenses team - figure 1

Scientific objectives

The management of insect pests, from phytophagous and parasites to disease vectors requires a thorough knowledge of the mechanisms by which insects deal with chemical and biological challenges. These challenges to insect fitness can be viewed as a seamless range of aggressions, rather than categories of "pathogens" or "xenobiotics". The overall goal of our team is to exploit genomic resources to study the functional basis of insect defense mechanisms and their evolution.


1 – Insect defenses as determinant of plant exploitation: characterization and evolution

Defense processes are essential fitness-related traits determining survival and evolving under a combination of antagonistic selection pressures. In the case of grazing insects or phloem-feeders, they also directly determine their ability to exploit the plant through i) suppression or modulation of early local and later systemic events of plant defense response and ii) detoxification of plant toxic compounds (whether constitutively produced or resulting from the plant response to insect attack). We explore the question of the importance of insect defense processes as determinant of plant exploitation using several complementary projects using aphids and noctuid pests.

2 – Insect defenses as determinant of survival to xenobiotics

Herbivorous insects have developed detoxification mechanisms to inactivate the plant toxins that they ingest, often depending on expression of cytochromes P450. The nuclear receptors that control P450s are well understood in vertebrates, but remain poorly understood in invertebrates. The overall objective of this project is to investigate detoxification mechanisms in the polyphagous lepidopteran pest, Spodoptera frugiperda and to elucidate the signaling pathways involved in the mounting of a xenobiotic-adapted response. Our previous studies showed that the pattern of differentially transcribed genes were specific to each chemical tested suggesting multiple, partially overlapping pathways. Transcriptomic studies are used to further assess the specificity of the responses and to gain further information of the possible signaling pathways involved.

3 - Evolution of multigenic families involved in insect defenses

In support of the objectives described above, our team will continue to exploit genomic and transcriptomic resources to document the evolution of multigenic families such as cytokines, detoxification enzymes, receptors and transporters as a service to the community (annotation) and as a basis for the correct design and interpretation of experiments involving insect defenses.