Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

News and events

PhD position available under the joint supervision of the ESIM and Symbiosis teams

Advertisement :

PhD position available under the joint supervision of the ESIM and Symbiosis teams - Funding by the International SIGNALIFE PhD Programme (

Project title : "Cross-talk between aphid facultative symbiosis and plant nitrogen fixation symbiosis in the Acyrthosiphon pisum - Medicago truncatula interaction" Aim : question how the plant nitrogen fixation symbiosis and the aphid facultative symbiosis interfere in terms of induced phenotypic effects, and modulate the interaction between the pea aphid and its legume host plant.
Programme opened to all students with a Master diploma equivalent.Appliance on *the web site* for a specific project ( : 1st of AprilCandidates, contact  M. Poirié ( and/or P. Frendo ( as soon as possible

Breakthroughs :

First demonstration of secretion of a superoxide dismutase in insects and possible role in parasitoids

Following identification of intracellular (SOD1) and extracellular (SOD3) Cu,Zn superoxide dismutase transcripts in the venom apparatus of twoLeptopilinaspecies, parasitoids ofDrosophila, we could demonstrate thatL. boulardiSOD3 (LbSOD3) is indeed secreted and active in venom. No SOD protein nor SOD activity were detected inL. heterotomavenom evidencing quantitative interspecific variation.Leptopilinarecombinant SOD3s as well as a mammalian SODin vitroinhibited theDrosophilaphenoloxidase activity in a dose-dependent manner, demonstrating that SODs may interfere with theDrosophilamelanization process and therefore with production of the host cytotoxic compounds. Phylogenetic analyses ofLeptopilinaSODs indicated that the extracellular SODs are more related to cytoplasmic vertebrate SODs than to extracellular ones. This work provided the first demonstration that insect extracellular SODs are indeed secreted and active in an insect fluid and can be used as virulence factors to counteract the host immune response, a strategy largely used by bacterial and fungal pathogens but also protozoan parasites during infection.

Parasitoid main venom components : similar function, yet different tools

A striking feature that emerges from the recent accumulation of data regarding parasitoid wasp venom content is the lack of predictable observation of common major components. Our recent results on Leptopilina figitid wasps perfectly illustrate this point. Thanks to a combined transcriptomic and proteomic approach, we have identified the main secreted proteins in the venom ofL. heterotomaand of two well-characterized strains ofL. boulardi, ISm and ISy.Results revealed significant quantitative differences in venom components between theL. boulardistrains, in agreement with their different virulence properties. Strikingly, the two relatedLeptopilinaspecies did not share any abundant venom protein. The main identified proteins inL. boulardiwere RhoGAPs and serpins while an aspartylglucosaminidase was found to be abundant inL. heterotoma, as it is in some Asobara species (braconid wasps). Altogether, our data suggest that parasitoid venom can quickly evolve, mainly through rapid changes in regulation of gene expression. They also evidence venom evolutionary processes largely described in other venomous animals, i.e. the convergent recruitment of venom proteins between phylogenetically unrelated organisms, and the role of duplications in the emergence of multigenic families of virulence factors.

First evidence of inter-individual variation in parasitoid venom and evolutionary consequences

Intriguingly, the question of the level of venom variability inside species has been largely neglected, although it may partly determine the potential for parasitoid adaptation. To estimate this parameter, we have developed an approach combining detection of protein electrophoretic patterns on a single venom reservoir content and analysis of these patterns with a dedicated software. This has allowed demonstrating occurrence of inter-individual variability, mostly quantitative, in figitid and braconid species, using both laboratory strains and field populations (publication in J. Insect Physiol.). Whether occurrence of such variability may permit a selection of parasitoid venom components is currently tested in collaboration with the BPI team using Psyttalia biological control auxiliaries. The aim is to assess whether rearing conditions, including the raise of parasitoids on a substitute host, may lead to changes in female venom components and possibly in parasitism success against the targeted host.

The presence of secondary symbionts affects the immune aphid phenotype

Aphids can host several secondary symbionts (SS) in addition to the primary endosymbiontBuchnera aphidicola. These SS have been previously shown to alter various aphid phenotypes, including body color, heat resistance, or resistance to pathogens or parasites. Having characterized the pea aphid hemocytes, and thanks to the availability of lines harboring each SS separately in the same genetic background, we were able to demonstrate that i) plasmatocytes and granulocytes can phagocyte all primary and secondary symbionts but some of these SS seem able to survive inside hemocytes,  ii) that the presence of some SS alters the number of these hemocytes as well as the phenoloxidase activity in the aphid hemolymph, iii) that this effect can be symbiont-strain dependant. Part of these results have been published in PLoS One, others will be submitted soon.

Sex-determination : a genetic basis common to bees, bumblebees and ants

Little is known regarding sex determination mechanisms in Hymenoptera. However, sl-CSD,  one of the main proposed mechanism could drive small populations into a vortex of extinction. Indeed, this mechanism relies on a single locus (namedcsd), only individuals heterozygous at this locus developing into females while homozygous individuals develop into diploid males of reduced fitness. Thecsdgene has been identified in the honeybee and was considered to be unique to the Apis lineage. Our results have demonstrated that i)csdis not restricted to the Apidae but is also present in bumblebees and ants genome, ii) csd originates from an ancestral duplication of thefemgene (key gene in sex determination) in the ancestor of the sub-orderAculeata,  iii) thefemandcsdgenes are one of the rare examples of concerted evolution based on gene conversion. These results, published inNature Communications,raise the question of the occurrence and possible role of thecsdgene in other Hymenoptera, notably in parasitoid wasps, largely used in biological control.