Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

http://www.paca.inra.fr/institut-sophia-agrobiotech_eng/

Using Barley mutants to understand meiosis and recombination in cereals

Thursday, september 13 - 11:00 - Sophia Antipolis - Inra PACA - Room A010

Séminaire scientifique
As part of the scientific animation of Institut Sophia Agrobiotech, Isabelle Colas (Cell and Molecular Sciences Group-The James Hutton Institute-Scotland, UK) will present: "Using Barley mutants to understand meiosis and recombination in cereals"

Abstract

A greater understanding of the control of recombination in crop plants would be particularly useful for crop species such as barley (and wheat) where a highly skewed distribution of meiotic crossover events means that up to half of the genes rarely, if ever, recombine.  In these crops, substantial proportions of the chromosomes are inherited together as a large linkage block, preventing the generation of novel gene combinations and useful variation that could be exploited in breeding programmes. In order to improve our understanding of recombination in barley, and ultimately to be able to modulate recombination in barley, we are characterizing a collection of 14 non-allelic desynaptic (des) mutants that exhibit perturbed meiosis and semi-sterility compared to wild type. A number of these mutants have now been genetically mapped using the semi-sterility phenotype and cytologically characterized. In particular, 3D-SIM microscopy analysis reveals that each mutant is differently affected for synapsis, crossing over formation and meiosis progression. We will discuss results of some of these mutants, showing the importance of the interplay between synapsis and recombination and the implication for the modulation of recombination for breeding purpose.

References:

  • Isabelle Colas, Benoit Darrier, Mikel Arrieta, Sybille Mittmann, Luke Ramsay, Pierre Sourdille and Robbie Waugh. Observation of extensive chromosome axis remodelling during the ‘diffuse-phase’ of meiosis in large genome cereals. (2017) Frontiers in Plant Sciences. Jul 13;8:1235.
  • Isabelle Colas, Malcolm Macaulay, James D. Higgins, Dylan Phillips, Abdellah Barakate, Markus Posch, Sue J. Armstrong, F. Chris H. Franklin, Claire Halpin, Robbie Waugh, and Luke Ramsay. A spontaneous mutation in MutL-Homolog 3 (HvMLH3) affects synapsis progression and crossover resolution in the barley desynaptic mutant des10. (2016) New Phytol. 212(3):693-707
  • Barakate A, Higgins JD, Vivera S, Stephens J, Perry RM, Ramsay L, Colas I, Oakey H, Waugh R, Franklin FC, Armstrong SJ, Halpin C. The synaptonemal complex protein ZYP1 is required for imposition of meiotic crossovers in barley. (2014) Plant Cell. Feb;26(2):729-40.