Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

Evolutionary Applications

24 April 2018

Evolutionary Applications
© 2018 John Wiley & Sons, Inc.
Effects of inbreeding on a gregarious parasitoid wasp with complementary sex determination


Inbreeding and inbreeding depression are processes in small populations of particular interest for a range of human activities such as animal breeding, species conservation, or pest management. In particular, biological control programs should benefit from a thorough understanding of the causes and consequences of inbreeding because natural enemies experience repetitive bottlenecks during importation, laboratory rearing, and introduction. Predicting the effect of inbreeding in hymenopteran parasitoid wasps, frequently used in biological control programs, is nonetheless a difficult endeavor. In haplodiploid parasitoids, the purge of deleterious alleles via haploid males should reduce genetic load, but if these species also have complementary sex determination (CSD), abnormal diploid males will be produced, which may jeopardize the success of biological control introductions. Mastrus ridens is such a parasitoid wasp with CSD, introduced to control the codling moth, Cydia pomonella (L.). We studied its life history traits in the laboratory under two conditions: inbred (full‐sib) and outbred (nonsib) crosses, across five generations, to examine the consequences of inbreeding in this species. We found that in inbred lines, nonreproducing females live less, the number of daughters produced was lower, and sex ratio (proportion of males) and proportion of diploid males were higher. Diploid males were able to produce fertile daughters, but fewer than haploid males. Lineage survival was similar for inbred and outbred lines across the five generations. The most significant decrease in fitness was thus a consequence of the production of diploid males, but this effect was not as extreme as in most other species with CSD, due to the fertility of diploid males. This study highlights the importance of determining the type of sex determination in parasitoid wasps used for biological control, and the importance of maintaining genetic diversity in species with CSD when importation or augmentation is the goal.


biological control, diploid males, hymenoptera, ichneumonidae, inbreeding depression

Zaviezo, T., Retamal, R., Urvois, T., Fauvergue, X., Blin, A., and Malausa, T. (2018). Effects of inbreeding on a gregarious parasitoid wasp with complementary sex determination. Evolutionary Applications 11, 243–253. DOI: 10.1111/eva.12537

Site : View online >>