Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

BMC Plant Biology

26 October 2018

BMC Plant Biology
© 018 BioMed Central Ltd unless otherwise stated. Part of Springer Nature.
Comparative root transcriptome of wild Arachis reveals NBS-LRR genes related to nematode resistance



The Root-Knot Nematode (RKN), Meloidogyne arenaria, significantly reduces peanut grain quality and yield worldwide. Whilst the cultivated species has low levels of resistance to RKN and other pests and diseases, peanut wild relatives (Arachis spp.) show rich genetic diversity and harbor high levels of resistance to many pathogens and environmental constraints. Comparative transcriptome analysis can be applied to identify candidate resistance genes.


Transcriptome analysis during the early stages of RKN infection of two peanut wild relatives, the highly RKN resistant Arachis stenosperma and the moderately susceptible A. duranensis, revealed genes related to plant immunity with contrasting expression profiles. These included genes involved in hormone signaling and secondary metabolites production and also members of the NBS-LRR class of plant disease resistance (R) genes. From 345 NBS-LRRs identified in A.duranensis reference genome, 52 were differentially expressed between inoculated and control samples, with the majority occurring in physical clusters unevenly distributed on eight chromosomes with preferential tandem duplication. The majority of these NBS-LRR genes showed contrasting expression behaviour between A. duranensis and A. stenosperma, particularly at 6 days after nematode inoculation, coinciding with the onset of the Hypersensitive Response in the resistant species. The physical clustering of some of these NBS-LRR genes correlated with their expression patterns in the contrasting genotypes. Four NBS-LRR genes exclusively expressed in A. stenosperma are located within clusters on chromosome Aradu. A09, which harbors a QTL for RKN resistance, suggesting a functional role for their physical arrangement and their potential involvement in this defense response.


The identification of functional novel R genes in wild Arachis species responsible for triggering effective defense cascades can contribute to the crop genetic improvement and enhance peanut resilience to RKN.


  • Meloidogyne
  • resistance genes
  • peanut
  • Root Knot Nematode
  • transcriptome

Mota, A.P.Z., Vidigal, B., Danchin, E.G.J., Togawa, R.C., Leal-Bertioli, S.C.M., Bertioli, D.J., Araujo, A.C.G., Brasileiro, A.C.M., and Guimaraes, P.M. (2018). Comparative root transcriptome of wild Arachis reveals NBS-LRR genes related to nematode resistance. BMC Plant Biology 18, 159. DOI: 10.1186/s12870-018-1373-7

Site : View online >>