Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Home page

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs

http://www.paca.inra.fr/institut-sophia-agrobiotech_eng/

Identification and characterization of H2O2 and NO-regulated genes in the rhizobial symbiosis (SYMBIOSE Team)

Using the Medicago truncatula/Sinorhizobium meliloti interaction as symbiotic model, the research conducted aims at deciphering the role of the hydrogen peroxide and nitric oxide in the regulation of gene expression during this interaction.

Reactive oxygen species (ROS), particularly H2O2, and nitric oxide (NO) play an important role in signalling in various cellular processes. The involvement of these molecules in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about their effect on gene expression. Transcriptomic analyses were performed on inoculated roots of M. truncatula to identify genes regulated by these two molecules. Numerous genes were found to be differentially regulated in H2O21 and NO2-depleted roots during the symbiotic interaction. Characterisation of candidate genes such as MtSpk1, a putative protein kinase, showed their involvement in the signal transduction pathway involved in the symbiotic interaction.

General scheme summarizing the roles of H2O2 and NO in the nodulation process. Emphasis is made on their signaling role including their cross-talk, which modulates essential steps of the symbiotic process.

General scheme summarizing the roles of H2O2 and NO in the nodulation process. Emphasis is made on their signaling role including their cross-talk, which modulates essential steps of the symbiotic process.

  1. Andrio E, Marino D, Marmeys A, Dunoyer de Segonzac M, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N. (2013) Hydrogen peroxide-regulated genes in the Medicago truncatula – Sinorhizobium meliloti symbiosis. New Phytologist, 198, 179-89
  2. Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A. (2013) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol., 161, 425-39