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Abstract Identifying the invasion routes and deter-

mining the origin of new outbreaks of invasive species
are of crucial importance if we are to understand the

invasion process, improve or establish regulatory

measures and, potentially, limit the damage. We
focused here on the invasion of Europe by the

pinewood nematode (PWN), Bursaphelenchus xylo-
philus (Steiner & Buhrer, 1934; Nickle 1970; Nem-

atoda: Aphelenchoididae), a major pest of forest

ecosystems, native to North America and already
invasive in Asia since the beginning of the twentieth

century. We evaluated the genetic diversity and

structure of worldwide field PWN samples by classical
and Bayesian population genetics methods to

determine the source of the European invasive pop-

ulations and the number of introduction events in
Europe. We found (1) a very strong spatial genetic

structure in native PWN populations, (2) a very low

level of polymorphism in each of the invaded areas
and (3) contrasted results concerning the origin of

European invasive populations. Our findings provide
evidence for: (1) a large effect of genetic drift on the

biological cycle of the PWN, due to intense demo-

graphic bottlenecks during tree infections, not com-
pensated for by effective dispersal of its vector; (2) a

single introduction event for each of the invaded areas

in Japan and Europe and a small effective size for the
introduced populations and (3) a mainland Portuguese

origin for PWN populations from Madeira. However,

more sophisticated methods of invasion route infer-
ence and broader sampling are required to conclu-

sively determine the origin of the European outbreak.
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Introduction

Several studies have shown that it is more effective to
fight biological invasions in their initial stages than to

try to eradicate the invader after its establishment, in

terms of cost, time and management efficiency
(Allendorf and Lundquist 2003; Simberloff et al.

2013). Deciphering geographic pathways followed by

invasive species is a key first step in this direction.
Many studies carried out over the last decade have

tried to identify the invasion routes of several invasive

species, including insects (Papura et al. 2012; Pascual
et al. 2007; Perdereau et al. 2013; Zepeda-Paulo et al.

2010), plants (Kelager et al. 2013), nematodes (Bou-

cher et al. 2013) and fungi (Fontaine et al. 2013).
Indeed, this approach can be used to address various

questions of both practical and theoretical concern

(Estoup and Guillemaud 2010). Specifically, from a
practical point of view, it may facilitate the design of

strategies for preventing new invasions, by highlight-

ing weaknesses in control and phytosanitary measures.
It may help to improve the control or eradication of

detrimental invasive species, through the identifica-

tion of natural enemies in the native area, better
understanding of the biology of populations and

definition of the ecological features of invasive

populations (Mack et al. 2000; Strong and Pemberton
2000; Tsutsui et al. 2000; van Wilgen et al. 2013).

From a more fundamental point of view, the inference

of invasion routes may provide useful information
about the invasion process. The testing of ecological

or evolutionary hypotheses explaining the success of
biological invasions requires relevant comparisons

between native and invasive populations (Facon et al.

2006; Keller and Taylor 2008; Puth and Post 2005;
Wilson et al. 2009) and, thus, basic knowledge of the

invasion routes used.

Here, we focused on the invasions of Europe by the
pinewood nematode (PWN), Bursaphelenchus xylo-

philus (Steiner and Buhrer 1934; Nickle, 1970;

Nematoda: Aphelenchoididae), a microscopic worm
that reproduces sexually (Futai 2013). Outside North

America (widely recognized as the native range of this

species, Dropkin et al. 1981; Kiritani and Morimoto
2004; Wingfield et al. 1982), PWN is the causal agent

of pine wilt disease (Mamiya 1972, 1976, 1983) and it

poses a serious threat to pine forests worldwide, due to
ecological and economic consequences of infestation

(Mamiya 1988; Soliman et al. 2012; Suzuki 2002;

Vicente et al. 2011). It was first observed outside its
native range in Japan, in 1905, near Nagasaki (Mam-

iya 1988), where 28 % of the 2.1 million ha of pine

forest was found to be infested in 2000 (Mamiya
2004). It has since spread to other Asian countries,

including China, Taiwan and South Korea (Moon et al.

2007). PWN was detected in the Setúbal Peninsula,
close to Lisbon in Portugal, in 1999 (Mota et al. 1999)

and new outbreaks have been identified since 2008 in

the centre of mainland Portugal and on Madeira
(Fonseca et al. 2012), as well as in Spain (Abelleira

et al. 2011; Robertson et al. 2011). PWN was

designated a quarantine organism by the European
and Mediterranean Plant Protection Organization

(OEPP/EPPO 1997) and the European Commission

ruling (2006/133/CE) has imposed strict measures on
the trade of wood, to limit the invasion. These

measures have added significant costs to those already

resulting from the destruction of pine forests.
Many studies have attempted to establish the origin

of invasive outbreaks of PWN in different geographic

areas (Cheng et al. 2008; Figueiredo et al. 2013;
Fonseca et al. 2012; Metge and Burgermeister 2008;

Pereira et al. 2013; Tares et al. 1992; Valadas et al.
2012a, b; Vieira et al. 2007; Zhang et al. 2008; Zhou

et al. 2007). An Asian origin for European invasive

populations of PWN was thus proposed (Figueiredo
et al. 2013; Fonseca et al. 2012; Metge and Burger-

meister 2008; Valadas et al. 2012b). However, these

studies were subject to experimental limitations, such
as the use of low-resolution markers (e.g. RAPD,
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RFLP), pools of individuals and/or collection samples.
Thus, no study has as yet clearly investigated the

worldwide invasion routes of PWN with relevant

molecular markers, appropriate samples and the
correct population genetics approaches as described

by Estoup and Guillemaud (2010).

Therefore, the aim of this study was to perform
population genetics analyses on natural PWN popu-

lations from around the world, with microsatellite

markers developed previously (Mallez et al. 2013). In
particular, we aimed to confirm the existence of the

strong genetic structure in the native area of this

species suggested by Mallez et al. (2013), through the
use of a larger number of samples from different US

states and hierarchical sampling. We also evaluated

the genetic diversity of PWN populations from
invaded areas, to obtain information about the number

of introduction events. Finally, we investigated the

relationships between populations in native and
invaded areas, to clarify the invasion routes used by

PWN. In particular, we investigated whether the

European invasion resulted from an introduction
independent of the Asian introduction or from suc-

cessive introductions via Asia. We also analysed the

relationships between invasive populations from
mainland Portugal and Madeira.

Materials and methods

The biological system of the PWN and its
generation time

The biological cycle of the PWN in natura is complex
and involves at least two partners: the pine tree and the

insect vector (Evans et al. 1996; Futai 2013 for a

review). The PWN and its vector are closely associ-
ated and their life cycles closely match (Mamiya

1972). Thus, the PWN reproduce exclusively during

summer once it invaded a susceptible pine tree (from
June to September for the largest period). Its gener-

ation time is not precisely known in natura due to
impossible direct observations of the PWN into the

tree. However, from laboratory experiments, it was

determined that the life cycle of the PWN depends
mainly on the temperature, which determines its

duration (Mamiya 1975). The generation time of the

PWN may thus be very short and lasts from 4–5 days
at 25 "C to about 12 days at 15 "C, with temperature

thresholds for development of 9.5 "C for the minimum
and 33 "C for the maximum (Mamiya 1975). Conse-

quently, by coupling this information, the generation

time of the PWN was approximated to 30 generations
per year (by averaging the summer temperature to

25 "C and by considering the June–September period

for PWN reproduction). This is about 450 generations
since the PWN introduction in Portugal and more than

3,200 generations since its introduction in Japan.

Sampling

Nematode samples were obtained from three different
geographic areas: a part of the native area, the USA

and two invaded areas, Japan and Portugal/Madeira.

Thirty-four locations were sampled and 770 individ-
uals were analysed in total: 18 locations from the USA

(391 individuals), nine from mainland Portugal and

Madeira (169 individuals) and seven from Japan (210
individuals). The PWN samples are listed and

described in Table 1 and the locations from which

the samples were collected are shown in Fig. 1. All
individuals were extracted from wood samples col-

lected directly from field locations. Each location

sample originated from a single tree and consisted of
seven to 36 individuals, at various stages. Nematodes

were extracted with a sieve or a Baermann funnel

(Viglierchio and Schmitt 1983). No permission was
required to collect samples of PWN from the infested

areas and we obtained an official agreement from the

French authorities (#2012060-0004) for the importa-
tion and manipulation of this quarantine organism at

Institut Sophia Agrobiotech facilities. For some sam-

ples, extraction of individuals were carried out by our
collaborators, who then sent them in DESS (Yoder

et al. 2006). These samples were washed in distilled

water before DNA extraction. For the other samples,
DNA was extracted directly after the extraction of

individuals from wood samples.

DNA extraction and genotyping of microsatellite

loci

Single individuals were subjected to a thermal shock, as

explained below, for DNA extraction (Castagnone et al.
2005). Each individual was hand-picked, transferred to

18 ll of lysis buffer (109 Taq buffer with MgCl2, Taq

Core Kits10, MP Biomedicals; 60 mg ml-1 proteinase
K and sterile distilled H2O) and placed at -80 "C for

Worldwide invasion routes of the PWN
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60 min. It was then immediately transferred to 60 "C for
60 min and, finally, to 95 "C for 15 min in a Biometra#

T3-Thermoblock Thermocycler. We amplified 16

microsatellite loci in three multiplex PCRs: MA28 (5

microsatellite loci), MB28 (5 microsatellite loci) and
MC33 (6 microsatellite loci), as described by Mallez

et al. (2013). We excluded Bx07 from the MB28

multiplex reaction, because this marker is identical to

Table 1 Characteristics and population genetics summary statistics of each sample of B. xylophilus used in this study

Sample code No. of individuals Origin Mean Na Max Na He Ho Fis

MO1 31 USA—Missouri—Columbia 3.25 8 0.33 0.27 0.19a

MO2 23 USA—Missouri—Columbia 3.38 7 0.36 0.26 0.27a

NE1 16 USA—Nebraska—Davey 2.00 4 0.20 0.18 0.09

NE2 15 USA—Nebraska—Davey 1.81 4 0.21 0.16 0.24

NE5 14 USA—Nebraska—Pawnee Lake 1.94 5 0.21 0.18 0.14

NE6 21 USA—Nebraska—Pawnee Lake 1.38 2 0.18 0.10 0.48a

NE9 29 USA—Nebraska—Pawnee Lake 2.63 5 0.31 0.23 0.26a

NE10 26 USA—Nebraska—Pawnee Lake 1.75 4 0.19 0.15 0.19a

NE12 28 USA—Nebraska—Conestoga Lake 1.50 3 0.15 0.10 0.34a

NE13b 19 USA—Nebraska—Pioneers Park 2.38 5 0.28 0.20 0.31a

NE14 28 USA—Nebraska—Pioneers Park 1.69 3 0.24 0.16 0.34a

NE15 23 USA—Nebraska—Pioneers Park 2.25 5 0.22 0.14 0.38a

NE19 16 USA—Nebraska—UNL East Campus 1.81 3 0.23 0.20 0.15

NE22 17 USA—Nebraska—Lincoln 2.00 5 0.28 0.20 0.28a

NE23 25 USA—Nebraska—Lincoln 1.25 2 0.07 0.07 0.09

NE24 19 USA—Nebraska—Lincoln 1.31 2 0.07 0.06 0.15

VI9 22 USA—Virginia—Midlothian 1.50 3 0.16 0.14 0.14

MA1 19 USA—Massachusetts—Worchester 1.50 2 0.14 0.14 0.00

Jap120 23 Japan—Iwate—Shiwa 1 1 – – –

Jap212 27 Japan—Iwate—Shiwa 1 1 – – –

Jap308 25 Japan—Iwate—Shiwa 1 1 – – –

Kasumig2 36 Japan—Ibaraki—Kasumigaura 1 1 – – –

Kasumig3 29 Japan—Ibaraki—Kasumigaura 1.19 2 0.06 0.06 -0.02

Kasumig5 35 Japan—Ibaraki—Kasumigaura 1 1 – – –

Kosa 35 Japan—Kumamoto—Kosa 1.25 2 0.06 0.05 0.03

Mad23PC 12 Madeira Island—Porto da Cruz 1 1 – – –

Mad24C 7 Madeira Island—Calheta 1 1 – – –

128S 17 Portugal—Setubal—Grândola 1.06 2 0.03 0.01 0.62a

TR1 30 Portugal—Setubal—Troia 1 1 – – –

TR2 27 Portugal—Setubal—Troia 1 1 – – –

AM2 21 Portugal—Setubal—Aguas de Moura 1 1 – – –

Comporta 28 Portugal—Setubal—Comporta 1 1 – – –

E182 13 Portugal—Coimbra—Penela 1 1 – – –

E1069 14 Portugal—Viseu—Castro Daire 1 1 – – –

Mean Na is the mean number of alleles per sample over all loci, Max Na is the maximum number of alleles per locus in each sample,
He is the expected heterozygosity and Ho is the observed heterozygosity. FIS was calculated as described by Weir and Cockerham
(1984)

‘‘–’’ indicates that Ho, He and FIS were not calculated, for samples with only monomorphic markers
a indicates that the result of the HWE test was significant at the 5 % level after FDR correction (Benjamini and Hochberg 1995)
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PWN_51 (Mallez et al. 2013). PCR amplifications were

performed in 10 ll containing 19 QIAGEN Multiplex

Master Mix, 2 lM of each primer, with forward primers
labelled with a fluorescent dye (6-FAM, VIC, PET or

NED) at the 50 end, and 2 ll of genomic DNA extracted

by thermal shock. The amplification reactions were
performed in a Biometra# T3-Thermoblock Thermocy-

cler and included a 15 min denaturation step at 95 "C,

followed by 28 or 33 cycles (depending on the multiplex
PCR) of 30 s at 94 "C, 1.5 min at 55 "C, and 1 min at

72 "C, followed by a final extension step of 30 min at

60 "C. Genotypes were determined with an ABI 3700
sequencer (Applied Biosystems), with the 500 LIZTM

GeneScanTM size standard (Applied Biosystems) and

GenemarkerTM version 1.75 software (SoftGenetics
LLC).

Data analyses

Standard genetic analyses

For each sample, we determined the maximum
number of alleles detected over all loci (Max. Na),

the mean number of alleles (Mean Na) and the

observed (Ho) and expected (He) heterozygosities
per sample, with GENETIX version 4.05 (Belkhir

et al. 1996–2004). We evaluated deviation from

Hardy–Weinberg equilibrium (HWE) with GENE-
POP version 4.1.3 (Rousset 2008) and we quantified

inferred deviations from HWE by calculating the Weir

and Cockerham estimate of FIS (Weir and Cockerham
1984) with FSTAT version 2.9.3.2 (Goudet 2002).

Linkage equilibrium between loci was assessed with

Fig. 1 Location of the sampling sites for B. xylophilus used in
this study. Three different geographic areas are represented: the
USA, a part of the native area, focusing on the Nebraska, and
two different invaded areas, mainland Portugal and Madeira and

Japan. The stars indicate the hypothetical entry points of PWN.
The dates of first observation for each invaded area are
indicated. The codes on the maps are the sample names. For
more details, see Table 1
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the log likelihood ratio test, in GENEPOP (Rousset
2008). We took multiple testing (HWE tests) and the

non-independence of tests (linkage tests) into account

by performing false discovery rate (FDR) correction
(Benjamini and Hochberg 1995) and sequential Bon-

ferroni adjustment (Sokal and Rohlf 1995), respec-

tively. Null allele frequencies were estimated with
FREENA (Chapuis and Estoup 2007).

Genetic structure analyses within areas

All the analyses described in this section were

performed within each area, for precise characteriza-
tion of the nematode samples from the native area and

the two invaded areas. We first tested the hypothesis of

uniform genotype frequencies between samples, by
Fisher’s exact test (Raymond and Rousset 1995)

implemented in GENEPOP (Rousset 2008). As non-

independent multiple tests were performed, sequential
Bonferroni correction (Sokal and Rohlf 1995) was

carried out to adjust significance levels. We also

calculated Weir and Cockerham estimates of FST (Weir
and Cockerham 1984) between samples, corrected for

null alleles with FREENA (Chapuis and Estoup 2007).

We then studied the structure of the populations from
each area by a Bayesian clustering approach, as

implemented in STRUCTURE version 2.3 (Pritchard

et al. 2000). An admixture model with correlated allele
frequencies was used (Falush et al. 2003). The numbers

of clusters tested, K, varied from 1 to 18 for the USA,

from 1 to 7 for Japan and from 1 to 4 for Portugal/
Madeira. We carried out 20 independent runs for each

value of K. Each run involved a Markov Chain Monte

Carlo (MCMC) procedure with 106 iterations, follow-
ing a burn-in period of 2 9 105 iterations. Default

values were maintained for all the other parameters.

The number of clusters was determined both as
described by Evanno et al. (2005) and automated in

STRUCTURE HARVESTER (http://taylor0.biology.

ucla.edu/struct_harvest/index.php, Earl and vonHoldt
2012) and by checking all the bar plots of co-ancestry

parameters for successive values of K. Using CLUMPP
(Jakobsson and Rosenberg 2007), we identified the

most frequent clustering patterns for each value of

K among the 20 runs, which we plotted with DI-
STRUCT version 1.1 (Rosenberg 2004). We checked

the adequacy of the clustering patterns chosen for

successive values of K.

In the USA, the hierarchical sampling in Nebraska
allowed us to investigate the possible occurrence of

isolation by distance (IBD). This involved assessment

of the correlation between genetic distance (FST/
(1 - FST)) and the logarithm of geographic distance,

for pairs of populations (Rousset 1997). We used the

Mantel test in GENEPOP (Rousset 2008) and 20,000
permutations to assess the significance of the

correlation.

Relationships between the different areas

We focused on the origin of the Portuguese mainland
and island (Madeira) samples. The most probable

source population, in North America or in Asia, for

each Portuguese sample was investigated in several
ways. More precisely, the aim of this part was to select

the most probable scenario among the following

scenarios: (1) a scenario with two independent intro-
ductions, in Asia and in Europe, from North America

and (2) a scenario with two successive introductions,

from North America to Asia and then from Asia to
Europe.

We first analysed the FST values corrected for null

alleles (Chapuis and Estoup 2007; Weir and Cocker-
ham 1984) between each Portuguese sample and each

American or Japanese sample. We then carried out an

individual assignment likelihood analysis (Paetkau
et al. 2004; Rannala and Mountain 1997), as in

previous studies on invasion routes (Ciosi et al. 2008;

Pascual et al. 2007) with GENECLASS2 software
version 2.0 (Piry et al. 2004). This analysis involves

calculating the mean individual assignment likelihood

(denoted Li?s) of each Portuguese sample i, to each
possible source population s (the American samples

and the Japanese samples, in our case). The most

probable source of a target invasive population sample
i is considered to be the population with the lowest

corrected FST values with i and the maximum

assignment likelihood of i. We expect a lower
corrected FST value between the USA and Portugal/

Madeira Island than between Asia and Portugal/
Madeira Island under the scenario of independent

events of introduction and the opposite under the

scenario of successive events of introduction.
We also plotted a neighbour joining (NJ) tree (Saitou

and Nei 1987), based on Cavalli-Sforza and Edwards

genetic distances (Cavalli-Sforza and Edwards 1967)
with POPULATION software version 1.2.30

S. Mallez et al.
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(http://bioinformatics.org/*tryphon/populations/). The
robustness of the tree topology was evaluated by carrying

out 2,000 bootstrap replicates over loci. A tree based on

Cavalli-Sforza and Edwards genetic distances (Cavalli-
Sforza and Edwards 1967) corrected for null alleles

(Chapuis and Estoup 2007) was also built. The most

probable source of a target invasive population sample
i is considered to be the population from outside Europe

whose sample is clustering closest to i in the tree.

Finally, we carried out Bayesian clustering analysis
with STRUCTURE software (Pritchard et al. 2000)

using all the samples from North America, Asia and

Europe to determine the origin of the sampled
Portuguese populations. The number of clusters tested,

K, varied from 1 to 10. As before, an admixture model

with correlated allele frequencies (Falush et al. 2003),
20 runs per K, 106 iterations for the MCMC and

2 9 105 iterations for the burn-in period were used.

CLUMPP (Jakobsson and Rosenberg 2007) and
DISTRUCT (Rosenberg 2004) was used to identify

the most frequent clustering patterns for each value of

K and to display the corresponding bar plots, respec-
tively. This method identifies the most probable source

of a target invasive population sample i as the

population for which the sample(s) is (are) the last to
cluster with i with increasing values of K. Thus, under

the scenario of independent events of introduction, we

expect that an American sample is the last one to still
cluster with Portugal/Madeira Island with increasing

values of K. Conversely, under the scenario of

successive events of introduction, we expect an Asian
sample to be the last one to still cluster with Portugal/

Madeira Island with increasing values of K.

Results

Standard genetic analyses

Three markers were monomorphic (M3, M30 and
M49), even in the native area (but see Mallez et al.

2013, who found polymorphism at these markers in
the native area, in analyses of collection and field

samples). Genetic diversity was low to moderate in the

USA and low to extremely low in invaded areas (see
Table 1). In the native area, we detected up to eight

alleles per locus and per sample (and up to 13 alleles

per locus over all samples), with a mean number of
alleles per sample (Mean Na) of 1.31–3.38 and a mean

expected heterozygosity (He) of 0.07–0.36. Numerous
monomorphic markers were detected in the invaded

areas: 10 markers in Japan and 15 markers in Portugal/

Madeira, of the 16 considered. No more than two
alleles per locus and per sample (and no more than

three per locus over all samples in Japan) were

detected, with a mean Na of 1.25 and a mean He of
0.06 at most. Ten samples in the native area and one

sample in Portugal deviated significantly from HWE

because of a heterozygous deficit (see Table 1).
Significant linkage disequilibrium was found in 10

of the 624 pairwise tests carried out (after sequential

Bonferroni correction, Sokal and Rohlf 1995), for four
pairs of loci: M62 and Bx08; M51 and M56; M35 and

M56 and M35 and M51. Examination of the results of

FREENA analysis (Chapuis and Estoup 2007) showed
that most of the deviation from HWE (especially in

Portugal) and most of the significant linkage tests were

accounted for by the presence of null alleles at the loci
involved (estimates of null allele frequencies from 7 to

24 %, data not shown). However, null alleles were not

systematically observed for a given marker across all
the samples or for a given sample across all the

markers. In addition, none of the samples or markers

had more than 10 % null alleles on average. We
therefore used the entire dataset for further analyses.

Genetic structure analyses within geographic areas

In the USA, all samples displayed significant differ-

entiation after correction for multiple testing (Fisher’s
exact tests, p \ 10-5). Pairwise corrected estimates of

FST values were also very high: from 0.06 to 0.76 (for

more details see Table S1). The number of clusters
could not be clearly inferred from the Bayesian

clustering analysis, because DK (Evanno et al. 2005)

had several peaks, at different values of K (see Figure
S1). A biologically meaningful genetic structure

occurred for large values of K (see the examples of

bar plots for several values of K in Fig. 2A and all bar
plots in Figure S2). Most samples were progressively

unambiguously assigned to different clusters, at least
until K = 14. We also detected evidence of IBD

(slope = 0.064, p = 0.013).

In Japan, the three samples from Iwate in the North
were genetically identical, presenting one fixed allele

for all the markers. All the remaining samples

appeared to display significant differentiation (Fish-
er’s exact tests, p \ 10-5), with extremely high

Worldwide invasion routes of the PWN
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corrected FST values, ranging from 0.63 to 0.99
(excluding the three identical samples, see Table S1

for more details). Strong genetic structure was also
detected at the scale of the tree, with STRUCTURE.

The DK method (Evanno et al. 2005) inferred the

existence of three clusters (see Figure S1), but
likelihood values reached a plateau at K = 5 and an

examination of successive bar plots for co-ancestry

suggested a meaningful structure for K = 5 (see
Fig. 2B).

In Portugal, eight of the nine samples were

genetically identical and 162 individuals (of the 169
sampled) had identical homozygous multi-locus geno-

types. The remaining sample (128S) differed signif-

icantly from seven of the other eight samples after
correction for multiple testing (Fisher’s exact tests,

p \ 0.017). The result of one test was not significant

(Mad24C vs. 128S, Fisher’s exact test, p = 0.065),
probably because of the small size (seven individuals)

of the Mad24C sample. The clustering analysis

inferred a single cluster, grouping together the samples
from mainland Portugal and Madeira (see Fig. 2C,

Figure S1).

Relationships between populations

from the different geographic areas

The results of the various analyses performed to

clarify the relationships between the populations in

different geographic areas are visualized and summa-
rized in Fig. 3. The lowest FST values obtained with

Portuguese samples always corresponded to American

samples (see the example of one Portuguese sample in
Fig. 3A and all Portuguese samples in Figure S3). The

mean FST value (across samples) between Portugal/
Madeira and the USA was also lower than that

between Portugal/Madeira and Japan, as shown by the

dashed lines in Fig. 3A. Thus, the populations of
Portugal/Madeira seem to be closer to the American

populations than to the Japanese populations, on the

basis of FST. Portuguese samples were assigned to
American samples with the largest mean individual

likelihood (Li?s, see the example of one Portuguese

sample in Fig. 3B and all Portuguese samples in
Figure S4). However, if we averaged across samples,

Portugal was assigned to Japan with the largest mean

individual likelihood (dashed lines on Fig. 3B). The

Fig. 2 Genetic structure of the PWN field samples within each
area. Bar plots of the coefficients of co-ancestry obtained in
various STRUCTURE analyses with several values of K for
(A) a part of the native area, the USA and for the two invaded

areas studied here, (B) Japan and (C) Portugal/Madeira. Each
bar corresponds to one individual nematode and each cluster is
represented with a particular colour
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origin of the Portuguese samples is thus not clearly
inferred with this statistic. On the NJ tree, the

Portuguese samples were closer to the Japanese

samples than to the American samples, for trees
generated with both uncorrected and corrected Cav-

alli-Sforza and Edwards distances (Cavalli-Sforza and

Edwards 1967; Chapuis and Estoup 2007; Fig. 3C,
Figure S5, respectively). This result was robust to the

use of other genetic distances (data not shown).

Finally, Bayesian clustering analysis (Fig. 3D)
showed that the Portuguese samples clustered with

the Japanese samples at the lowest level of structur-

ation (K = 2), with the Portuguese samples and three
Japanese samples subsequently clustering together,

separately from the other Japanese samples, at K = 3.
This result was confirmed by a clustering analysis of

the samples from invaded areas only (Portugal/

Madeira and Japan, data not shown).

Discussion

In this study, we investigated the genetic diversity and

structure of natural PWN populations from around the
world and the relationships between populations from

native and invaded areas. Three main results were

obtained: (1) we confirmed here, with a much larger
number of samples, the existence of the strong genetic

Fig. 3 Genetic relationships between populations from the
different areas. The results of the four analyses performed are
shown. (A) Weir and Cockerham estimates of FST corrected for
null alleles (Chapuis and Estoup 2007; Weir and Cockerham
1984) between TR1, a Portuguese sample shown as an example,
and each Japanese (in green) or American (in orange) sample.
(B) Mean log-likelihood of the multilocus individual assign-
ment (Li?s) of TR1 to each Japanese (in green) or American (in
orange) sample. For these first two analyses, the sample
displaying the lowest FST with TR1 or the largest mean Li?s

is indicated with an asterisk. The mean values across samples

for each area and for each parameter are represented by dashed
lines. The results of FST and Li?s for other Portuguese samples
are given in Figure S1 and Figure S2, respectively. (C) NJ tree
based on Cavalli-Sforza and Edwards distances (Cavalli-Sforza
and Edwards 1967). Bootstrap (on locus) values calculated over
2,000 replications are given as percentages (only values[20 %
are shown). American samples are shown in orange, Japanese
samples in green and Portuguese samples in blue. (D) Bar plots
of the coefficients of co-ancestry obtained with STRUCTURE
for the first values of K. Each bar corresponds to one individual
nematode and each cluster is represented by a particular colour
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structure of PWN populations suggested by Mallez
et al. (2013), consistent with notion that genetic drift

has had a major effect on the genetic structure of

PWN, (2) we found very low levels of polymorphism
in the invaded areas, suggesting single introduction

events, introduced populations with small effective

sizes and clarifying the relationships between invasive
populations within Europe and (3) we observed that

classical and Bayesian population genetics methods

were inconclusive concerning the invasion routes
followed by PWN, and that more powerful inference

methods are therefore required.

Strong genetic structure in PWN populations

We observed a strong spatial genetic structure of
native PWN populations. A very low genetic diversity

within samples from the native area compared to that

between populations, highly significant differentiation
tests, Bayesian clustering analysis and the extremely

high values of pairwise FST were indicative of this

structure. The very low within sample variability may
have artificially increased FST values.

Such a genetic structure has already been reported

in the native ranges of invasive species (e.g. for a
Cuban lizard, by Kolbe et al. 2004). Our findings

confirm those reported by Mallez et al. (2013), for a

larger number of samples with hierarchical sampling
in Nebraska. They confirm that the migration-drift

equilibrium is highly biased towards significant

genetic drift without compensation by efficient dis-
persal, even over short distances. The limited dispersal

of the PWN may reflect the complexity of its dispersal

process, which is principally dependent on an insect
vector, Monochamus species (Akbulut and Stamps

2012; Linit 1988; Mamiya and Enda 1972; Sousa et al.

2001). This insect probably has a weak dispersal
capacity, resulting in dispersal over short distances

(Shibata 1986; Togashi 1990), particularly when the

vector is heavily loaded with nematodes, potentially
affecting its ability to fly (Akbulut and Linit 1999).

The evidence of genetic IBD is also consistent with the
probably spatially limited dispersal capacity of the

PWN.

PWN must also overcome several potential obsta-
cles to its dispersal. It must aggregate around pupal

chambers, entering the beetles just before emergence,

facilitating its entry into the tree via the maturation
feeding sites of the beetles, for effective reproduction

within the tree (reviewed in Futai 2013; Vicente et al.
2011). These steps may also contribute to the strong

genetic drift observed in this system, because (1) the

population of nematodes in an infested tree is aggre-
gated into a small number of beetles that emerge from

the tree (Akbulut and Linit 1999), (2) most beetles

carry only a bit of nematodes (Kobayashi et al. 1984;
Linit 1988) and (3) not all nematodes successfully

invade pine trees (Togashi 1985), resulting in rela-

tively low transmission rates (10–20 %, Kobayashi
et al. 1984; Togashi 1985).

Thus, the initial PWN population in a tree may be

small, subsequently increasing exponentially in size.
This creates considerable genetic drift, coupled with

rates of dispersal between trees too low to homogenise

genetic diversity.

Very low levels of polymorphism in invaded areas

Another finding in this study was the very low level or

even complete absence of genetic diversity in the

invaded areas, as observed in previous reports on the
same species (Fonseca et al. 2012; Pereira et al. 2013;

Vieira et al. 2007; Zhang et al. 2008; Zhou et al. 2007).

However, this finding is remarkable in comparison
with other invading species in which a loss of genetic

diversity during invasion is not as common as

previously expected (Bossdorf et al. 2005 for a review
in plant invasive species; Roman and Darling 2007 for

a review in aquatic invasions). The large number of

monomorphic markers and the similarity between
them across individuals (fixed alleles) are surprising at

first glance for a sexual species (Futai 2013) and for

microsatellite markers. However, these findings may
be accounted for by the low level of intra-sample

genetic diversity observed in the native area, together

with the genetic bottlenecks and founder events often
occurring during the introduction of species in new

areas (Allendorf and Lundquist 2003; Sakai et al.

2001). Moreover, biological invasions tend to occur
over short timescales, so mutational processes have

very little effect on the genetic structure of invasive
populations in the short term. Consequently, genetic

structure is shaped mostly by demographic processes,

such as intense demographic bottlenecks resulting in
intense genetic bottlenecks, as in this study.

This very low level of genetic diversity provides

information about the most probable number of
introduction events. In cases of multiple introductions
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in a restricted area, such as mainland Portugal,
Madeira or Japan, significant genetic diversity would

be expected, due to admixture of the various intro-

duced populations, particularly given the highly
structured nature of native populations. The almost

complete absence of polymorphism in mainland

Portugal, Madeira and Japan therefore strongly sug-
gests that a single introduction occurred in each of

these areas, with each introduced population having

small effective size. In the European context, these
findings firmly suggest that the second outbreak

detected in the centre of mainland Portugal in 2008

resulted from expansion of the first outbreak detected
close to Lisbon in 1999. This conclusion contrasts with

the findings of Valadas et al. (2012a), who suggested

that multiple introductions had occurred. Our findings
also suggest that the PWN populations on Madeira

originated from mainland Portugal, given the near

identity of the populations from Madeira and mainland
Portugal and the first detection of PWN outbreak on

Madeira 10 years after the first outbreak in mainland

Portugal.
Intra-population genetic diversity is widely consid-

ered to be a prerequisite for adaptation to changing

conditions and/or environment (Reed and Frankham
2003; Willi et al. 2006). Biological invasions have

thus brought to light a genetic paradox (Allendorf and

Lundquist 2003; Frankham 2005): the occurrence of
successful invasions with low levels of genetic

diversity. The case studied here provides a good

example of this paradox, because PWN populations
with low levels of diversity have managed to invade

several regions around the world. There are several

ecological mechanisms that might account for this
paradox in the case of PWN: (1) the presence of

appropriate insect vectors in each of the countries

invaded (Akbulut and Stamps 2012; Mamiya and Enda
1972; Naves et al. 2007; Sousa et al. 2001), (2) the

presence of susceptible hosts (Evans et al. 1996) and

(3) the greater competitiveness of PWN than of its
closely relative resident in the area, B. mucronatus

(Cheng et al. 2009; Vincent et al. 2008). There is also
some published evidence that a loss of genetic

diversity (demonstrated with neutral markers) does

not hamper the adaptive phenotypic variation of
fitness-related traits (Dlugosch and Parker 2008) and

that measurements of neutral genetic diversity are of

only limited value for the prediction of quantitative
genetic variability (Reed and Frankham 2001). Further

studies are therefore required to determine whether
invading PWN populations display significant adap-

tive genetic variability and whether this variability

contributes to the success of PWN.

Worldwide invasion routes of PWN: the need

for more powerful methods

The third main finding of this study was the difficulty

elucidating the worldwide invasion routes of PWN.
Depending on the analysis and the method used, we

alternatively inferred two possible origins, North Amer-

ica and Asia, for the Portuguese outbreaks. The FST and
mean FST values across samples suggested an Amer-

ican origin for all the Portuguese samples, whereas the

NJ tree and the Bayesian clustering analysis suggested a
Japanese origin for these samples. A discrepancy was

also found in the mean individual assignment likelihood

analysis, which gave inconsistent results, as the sample
with the minimum mean individual assignment likeli-

hood suggested an American origin and the mean

individual assignment likelihood between samples
suggested an Asian origin. This discrepancy partly

results from large inter-sample variance of allelic

frequency in North America. Previous studies have
proposed an Asian origin for the European populations

of PWN (Fonseca et al. 2012; Metge and Burgermeister

2008; Valadas et al. 2012b), essentially on the basis of
tree analyses. Our finding with the NJ tree and Bayesian

clustering is consistent with this conclusion. One key

point here is that the conclusions drawn from these
previous studies are no more robust than ours because

(1) the methods used are included among those used

here and (2) these previous studies did not use other
methods possibly leading to alternative conclusions.

These inconclusive results highlight a major prob-

lem with traditional methods: a lack of statistical
confidence evaluation for inferences of the source

population of invasion. No statistical tests are carried

out and no probabilities or type I or type II errors are
calculated for classical and Bayesian clustering or

distance methods. This makes it difficult to determine
which result is the most likely when several alterna-

tives are proposed (Estoup and Guillemaud 2010).

However, these classical and Bayesian methods have
proved both useful and conclusive in other cases of

invasion (Ciosi et al. 2008; Facon et al. 2003; Kolbe

et al. 2004; Papura et al. 2012; Perdereau et al. 2013;
Wan et al. 2012). We can therefore put forward several
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hypotheses to account for the conflicting results
obtained here: (1) the low level of diversity may have

resulted in a lack of power to discriminate between the

two possible alternatives, (2) the strong spatial genetic
structure observed in the USA, requiring a very large

sampling scheme to embrace most genetic variation of

the native and (3) the lack of samples from some of the
existing invaded areas, such as China or South Korea,

potentially serving as sources for the invasion of

Europe, as suggested by Figueiredo et al. (2013) on the
basis of analyses of collection samples for PWN.

Given the limitations of classical and Bayesian

methods, the use of recent model-based methods, such
as the approximate Bayesian computation (ABC,

Beaumont et al. 2002; Bertorelle et al. 2010; Guille-

maud et al. 2010) may prove useful. The enthusiasm
linked to the use of genetic data for reconstructing the

history of invasive species was restricted by failures or

technical limitations (Barun et al. 2013; Fitzpatrick
et al. 2012). However, ABC make possible to perform

extensive simulations of various/alternative hypothesis,

which is needed to make reliable biological interpre-
tations of invasion (Barun et al. 2013). Moreover, ABC

offers several advantages (described by Estoup and

Guillemaud 2010) that may be crucial in studies of
PWN: (1) it takes complex scenarii into account, (2) it

manages incomplete sampling by providing the possi-

bility of considering unsampled ‘‘ghost’’ populations
and, most importantly, (3) it makes it possible to

evaluate quantitatively and to compare statistically the

various competing scenarii, through the calculation of
posterior probabilities. Finally, efforts should be made

in future studies to obtain more representative samples.

These new samples should provide a better represen-
tation of the genetic diversity existing around the world,

more precisely describing the populations of the native

area and all the main invaded areas.
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