En savoir plus

A propos des cookies

Qu’est-ce qu’un « cookie » ?

Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.

Différents types de cookies sont déposés sur les sites :

  • Cookies strictement nécessaires au bon fonctionnement du site
  • Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques

> En savoir plus sur les cookies et leur fonctionnement

Les différents types de cookies déposés sur ce site

Cookies strictement nécessaires au site pour fonctionner

Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.

Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.

Cookies techniques

Nom du cookie

Finalité

Durée de conservation

Cookies de sessions CAS et PHP

Identifiants de connexion, sécurisation de session

Session

Tarteaucitron

Sauvegarde vos choix en matière de consentement des cookies

12 mois

Cookies de mesure d’audience (AT Internet)

Nom du cookie

Finalité

Durée de conservation

atid

Tracer le parcours du visiteur afin d’établir les statistiques de visites.

13 mois

atuserid

Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site

13 mois

atidvisitor

Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.

13 mois

À propos de l’outil de mesure d’audience AT Internet :

L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.

L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.

À savoir :

  • Les données collectées ne sont pas recoupées avec d’autres traitements
  • Le cookie déposé sert uniquement à la production de statistiques anonymes
  • Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.

Cookies tiers destinés à améliorer l’interactivité du site

Ce site s’appuie sur certains services fournis par des tiers qui permettent :

  • de proposer des contenus interactifs ;
  • d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
  • de visionner directement sur notre site des vidéos et présentations animées ;
  • de protéger les entrées des formulaires contre les robots ;
  • de surveiller les performances du site.

Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.

Accepter ou refuser les cookies : comment faire ?

Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.

Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».

Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :

Firefox ; Chrome ; Explorer ; Safari ; Opera

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :

INRAE
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2021

Menu Institut Sophia Agrobiotech Logo Marque Etat - République Française Logo_INRAE_noir Logo Université Côte d'Azur CNRS

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

Institut Sophia Agrobiotech

UMR INRA - Univ. Nice Sophia Antipolis - Cnrs
Inra PACA
400 route des chappes
BP 167
0690 Sophia Antipolis Cedex
FRANCE
Tel. : +33(0)4 92 38 64 00
Fax : + 33(0)4 92 38 64 01

http://www.paca.inra.fr/institut-sophia-agrobiotech

Publications

2022

  • Amine-Khodja IR, Boscari A, Riah N, Kechid M, Maougal RT, Belbekri N and Djekoun A (2022) Impact of Two Strains of Rhizobium leguminosarum on the Adaptation to Terminal Water Deficit of Two cultivars Vicia faba. Plants. 11, 515. https://doi.org/10.3390/plants11040515
  • Bartoli C, Boivin S, Marchetti M, Gris C, Gasciolli V, Gaston M, Auriac M-C, Debellé F, Cottret L, Carlier A, Masson-Boivin C, Lepetit M, Lefebvre B (2022) Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development. Environmental Microbiology.  in press. https://doi.org/10.1111/1462-2920.16148.
  • Benjamin, G.; Pandharikar, G.; Frendo, P. (2022) Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions. Biology. 11, 861. https://doi.org/10.3390/biology11060861
  • Benmoussa S, Nouairi I, Rajhi I, Rezgui S, Manai K, Taamali W,  Abbes Z, Zribi K, Brouquisse R and Mhadhbi H (2022) Growth Performance and Nitrogen Fixing Efficiency of FabaBean (Vicia faba L.) Genotypes in Symbiosis with Rhizobia under Combined Salinity and Hypoxia Stresses. Agronomy. 12, 606. https://doi.org/10.3390/agronomy12030606
  • Chammakhi C, Boscari A, Pacoud M, Aubert G, Mhadhbi H, Brouquisse R (2022) Nitric oxide pathway in drought-stressed nodules of faba bean (Viacia faba L.). International Journal of Molecular Sciences. 23, 13057. https://doi.org/10.3390/ijms232113057.
  • Luu TB, Ourth A, Pouzet C, Pauly N, Cullimore J. (2022) A newly-evolved chimeric lysin motif receptor-like kinase in Medicago truncatula spp. tricycla R108 extends its Rhizobia symbiotic partnership. New Phytol. May 25.https://doi.org/10.1111/nph.18270
  • Pacoud M., Mandon K., Cazareth J., Pierre O., Frendo P., Alloing G. (2022) Redox-sensitive fluorescent biosensors detect Sinorhizobium meliloti intracellular redox changes under free-living and symbiotic lifestyles. Free Radical Biology and Medecine, 184:185-195. doi: 10.1016/j.freeradbiomed.2022.03.030
  • Ruiz B, Sauviac L, Brouquisse R, Bruand C and Meilhoc E (2022) Role of NO of bacterial origin in the Medicago truncatula - Sinorhizobium meliloti symbiosis. Molecular Plant-Microbe Interactions
  • Sauviac, L., Rémy, A., Huault, E., Dalmasso, M., Kazmierczak, T., Jardinaud, M.-F., et al. (2022) A dual legume-rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. Plant, Cell & Environment. 45(10):1– 22. https://doi.org/10.1111/pce.14389

2021

  • Berger A, Boscari A, Puppo A; Brouquisse R (2021) Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation. Journal of Experimental Botany. 72, 3, 873–884, https://doi.org/10.1093/jxb/eraa403
  • Boivin S, Mahé F, Debellé F, Pervent M, Tancelin M, Tauzin M, Wielbo J, Mazurier S, Young P and Lepetit M (2021) Genetic Variation in Host-Specific Competitiveness of the Symbiont Rhizobium leguminosarum Symbiovar viciae. Front. Plant Sci. 12:719987. doi: 10.3389/fpls.2021.719987
  • Mandon K, Nazaret F.,  Farajzadeh D.,  Alloing G., and Frendo P. (2021) Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants. 10(6). doi: 10.3390/antiox10060880
  • Nguyen NNT, Clua J, Vetal PV, Vuarambon DJ, De Bellis D, Pervent M, Lepetit M, Udvardi M, Valentine AJ, Poirier Y (2021) PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula. Plant Physiol. Feb 25;185(1):196-209. doi: 10.1093/plphys/kiaa016. PMID: 33631809; PMCID: PMC8133656
  • Pervent M, Lambert I, Tauzin M, Karouani A, Nigg M, Jardinaud MF, Severac D, Colella S, Martin-Magniette ML, Lepetit M (2021) Systemic control of nodule formation by the plant N demand requires autoregulation dependent and independent mechanisms. J Exp Bot. Aug 24:erab374. doi: 10.1093/jxb/erab374. Epub ahead of print. PMID: 34427647
  • Young, J.P.W.; Moeskjær, S.; Afonin, A.; Rahi, P.; Maluk, M.; James, E.K.; Cavassim, M.I.A.; Rashid, M.H.-o.; Aserse, A.A.; Perry, B.J.; Wang, E.T.; Velázquez, E.; Andronov, E.E.; Tampakaki, A.; Flores Félix, J.D.; Rivas González, R.; Youseif, S.H.; Lepetit, M.; Boivin, S.; Jorrin, B.; Kenicer, G.J.; Peix, Á.; Hynes, M.F.; Ramírez-Bahena, M.H.; Gulati, A.; Tian, C.-F. (2021) Defining the Rhizobium leguminosarum Species Complex. Genes, 2021, 12, 111. DOI: 10.3390/genes12010111

2020

  • Aridhi F, Sghaier H, Gaitanaros A, Khadri A, Aschi-Smiti S, Brouquisse R (2020) Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and hypoxia. Planta, 252:22. DOI: 10.1007/s00425-020-03422-1.
  • Berger A, Boscari A, Maucourt M, Hanchi M, Bernillon S, Rolin D, Puppo A, Brouquisse R (2020) Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncatula - Sinorhizobium meliloti symbiosis. Frontiers in Plant Science, 11: 1313. DOI: 10.3389/fpls.2020.01313.
  • Berger, A., Guinand, S. Boscari, A., Puppo, A., Brouquisse, R., (2020). Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide level. New Phytol. New Phytol, 227:84-98. DOI:10.1111/nph.16462
  • Berger A., Boscari A., Puppo A., Brouquisse R. (2020) Nitrate reductases and hemoglobins control the nitrogen-fixing symbiosis via the regulation of nitric oxide level. Journal of Experimental Botany. doi.org/10.1093/jxb/eraa403.
  • Montrichard F., Frendo P., Buchanan B. and Rey P. (2019) Role of thioredoxins and their targets in legume seeds and seedlings. In “The Model Legume Medicago truncatula” edited by Frans J. de Bruijn Editor, published by Wiley/Blackwell. DOI: 10.1002/9781119409144.ch09.
  • Bosseno, M., Lambert, A., Beucher, D., Le Gleuher, M., Aubry, C., Pauly, N., Montrichard, F. and Boscari, A. (2020). A simple method for genetic crossing in Medicago truncatula . In The Model Legume Medicago truncatula, F. de Bruijn (Ed.). DOI:10.1002/9781119409144.ch132
  • Drain A, Thouin J, Wang L, Boeglin M, Pauly N, Nieves-Cordones M, Gaillard I, Véry AA, Sentenac H. (2020). Functional characterization and physiological roles of the single Shaker outward K+ channel in Medicago truncatula. Plant J., 102:1249-1265 DOI: 10.1111/tpj.14697.
  • Kazmierczak T.,Yang L., Boncompagni E., Meilhoc E., Frugier F., Frendo P., Bruand C., Gruber V. and Brouquisse R..(2020) Legume nodule senescence: a coordinated death mechanism between bacteria and plant cells. Advances in Botanical Research, 94, 181-212. DOI:10.1016/bs.abr.2019.09.013
  • Gaurav Pandharikar, Jean-Luc Gatti, Jean-Christophe Simon, Pierre Frendo, Marylène Poirié (2020). Aphid infestation differently affects the defences of nitrate-fed and nitrogen-fixing Medicago truncatula and alters symbiotic nitrogen fixation. Proc Biol Sci 287(1934). https://doi.org/10.1098/rspb.2020.1493.
  • Gupta KJ, Kolbert Z, Durner J, Lindermayr C, Corpas FJ, Brouquisse R, Barroso JB, Umbreen S, Palma JM, Hancock JT, Petrivalsky M, Wendehenne D, Loake GJ (2020) Regulating the regulator: nitric oxide control of post-translational modifications. New Phytol. DOI:10.1111/nph.16622.
  • Rajhi I., Ben Moussa S., Neji I., Baccouri B., Ben Chikha M., Chammakhi C., Amri M., Brouquisse R., Mhadhbi H. (2020) Photosynthetic and physiological responses of small seeded faba bean genotypes (Vicia faba L.) to salinity stress: identification of a contrasting pair towards salinity. Photosynthetica, 58:174-185. DOI: 10.32615/ps.2019.152
  • Roret T, Alloing G, Girardet JM, Perrot T, Dhalleine T, Couturier J, Frendo P, Didierjean C, Rouhier N. (2020) Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines. Biosci Rep. 40(10):BSR20202956. doi: 10.1042/BSR20202956. PMID: 32970113.
  • Sghaier H, Khadri A, Aloui A, Aschi-Smiti S, Brouquisse R (2020) Effects of combined saline and flooding stresses on the growth and physiological behavior of alfalfa (Medicago sativa L.). African Journal of Agronomical Research, 16:758-764. doi.org/10.5897/AJAR2020.14831
  • Yang L., El Mselhi S., Benyamina S., Lambert A., Hopkins J., Cazareth J. Hérouart D., Smiti S.-A., Boncompagni E. and Frendo P. (2020).Glutathione Deficiency in Sinorhizobium meliloti Does Not Impair Bacteroid Differentiation But Induces Early Senescence. Frontiers in plant science. 11:137. doi: 10.3389/fpls.2020.00137

2019

  • Thouin, J. ; Guo, M. Y. ; Zribi, I. ; Pauly, N. ; Mouradi, M. ; Ghoulam ; Sentenac, H. ; Véry, A.-A. The Medicago truncatula HKT family: Ion transport properties and regulation of expression upon abiotic stresses and symbiosis.  (BioRxiv), 2019. DOI:10.1101/720474
  • Brouquisse R. (2019) Multifaceted roles of nitric oxide in plants (Editorial). Journal of Experimental Botany, 70:4319-4322. DOI: 10.1093/jxb/erz352.
  • Pucciariello C., Boscari A., Tagliani A., Brouquisse R. and Perata P. (2019) Exploring Legume-Rhizobia Symbiotic Models for Waterlogging Tolerance. Frontiers in plant science, 10, 578, doi: 10.3389/fpls.2019.00578
  • Brouquisse R, Puppo A (2019), Plants that live on air. Encyclopédie de l’Environnement, [en ligne ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/en/life/plants-that-live-on-air/
  • Kolbert Z, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, Loake GJ, Palma JM, Petrivalsky M, Wendehenne D, Hancock JT. (2019) A forty year journey: The generation and roles of NO in plants. Nitric Oxide. 93:53-70 doi.org/10.1016/j.niox.2019.09.006.
  • Gupta KJ, Hancock JT, Petrivalsky M, Kolbert Z, Lindermayr C, Durner J, Barroso JB, Palma JM, Brouquisse R, Wendehenne D, Corpas FJ, Loake GT (2019) Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol, 225:1828-1834 . DOI: 10.1111/nph.16157.
  • Berger A., Boscari A., Frendo P. and Brouquisse R. (2019) Nitric oxide signalling, metabolism and toxicity in nitrogen-fixing symbiosis. Journal of Experimental Botany, 70(17):4505-4520. doi:10.1093/jxb/erz159.
  • El Msehli S., Lambert A., Hopkins J., Boncompagni E., Smiti-Aschi S., Hérouart D. and Frendo P. (2019) Physiological and genetic changes during natural senescence of root nodules in Medicago truncatula. Journal of plant nutrition and soil science, 182(3), 385-392 https://doi.org/10.1002/jpln.201800233
  • Hopkins J., Pierre O., Frendo P. And Boncompagni E. (2019) FYVE and PH protein domains present in MtZR1, a PRAF protein, modulate the development of roots and symbiotic root nodules of Medicago truncatula via potential phospholipids signalling. John Wiley & Sons, Inc. The model legume Medicago truncatula. Ed.: Frans J. de Bruijn. https://doi.org/10.1002/9781119409144.ch17
  • C Syska, R Brouquisse, G Alloing, N. Pauly, Frendo P., Bosseno M. Dupont L. and Boscari A. (2019) Molecular Weapons Contribute to Intracellular Rhizobia Accommodation Within Legume Host Cell. Frontiers in Plant Science. 10:1496. DOI. 10.3389/fpls.2019.01496 
  • Yang L., Syska C., Garcia I., Frendo P. And Boncompagni E. (2019). Involvement of proteases in nodule senescence in leguminous plants. John Wiley & Sons, Inc. The model legume Medicago truncatula. Ed.:  Frans J. de Bruijn. https://doi.org/10.1002/9781119409144.ch85

2018

  • Alloing, G.; Mandon, K.; Boncompagni, E.; Montrichard, F.; Frendo, P. (2018) Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants, 7, 182. DOI: 10.3390/antiox7120182
  • Amalfitano C., Gomez L., Frendo P., De Pascale S., Pepe O., Simister R., Ventorino V., Agrelli D. and Borrelli C., McQueen-Mason J.S., Caruso J (2018) Plant-Rhizobium symbiosis, seed nutraceuticals and waste quality for energy production of Vicia faba L. as affected by crop management. Chem. Biol. Technol. Agric. 5, 15. DOI: 10.1186/s40538-018-0126-z
  • Berger, A., Brouquisse, R., Pathak, P.K., Hichri, I., Inderjit, Bhatia, S., Boscari, A., Igamberdiev, A.U., and Gupta, K.J. (2018). Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules: Missing links and future directions. Plant, Cell & Environment 41, 2057–2068. DOI: 10.1111/pce.13151
  • Brouquisse R., Puppo A. (2018), Des plantes qui vivent de l’air du temps. Encyclopédie de l’Environnement, [en ligne ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/vivant/plantes-air-du-temps/

2017

  • Barroso JB, Durner J, Lindermayr C,  Loake G, Hancock J, Palma JM, Petrivalsky M, Brouquisse R, Corpas FJ (2017) Nitric oxide in plants. Nitric Oxide. 68:1-4. doi.org/10.1016/j.niox2017.07.002
  • Boncompagni E., Alloing G., Mandon K. And Frendo P. Synthesis and Roles of Glutathione and Homoglutathione in the Nitrogen-Fixing Symbiosis. Springer : Glutathione in plant growth, development and stress tolerance. Ed. : Mohammad Anwar Hossain, Mohammad Golam Mostofa, Pedro Diaz Vivancos, David J Burritt, Masayuki Fujita, and Lam-Son Phan Tran. DOI 10.1007/978-3-319-66682-2_2.
  • Bosseno M., Lambert A., Beucher D., Aubry C., Le Gleuher M., Pauly N., Montrichard F. and Boscari A. (2017). Protocole simple de rétrocroisement chez Medicago truncatula. Le Cahier des Techniques de l’INRA Art2-ct92.
  • Castella C ., Mirtziou I., Seassau A., Boscari A., Montrichard F., Papadopoulou K., Rouhier N., Puppo A., Brouquisse R (2017) Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide. Nitric Oxide doi: 10.1016/j.niox.2017.02.004
  • Kabbadj, A., Makoudi, B., Mouradi, M., Pauly, N., Frendo, P., and Ghoulam, C. (2017). Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba. PLOS ONE 12, e0190284. DOI: 10.1371/journal.pone.0190284
  • Ribeiro C.W., Baldacci-Cresp F., Pierre O., Larousse M., Benyamina S., Lambert A., Hopkins J., Castella C., Cazareth J., Alloing G., Boncompagni E., Couturier J., Mergaert P., Gamas P., Rouhier N., Montrichard F. and Frendo P. Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1. Curr. Biol. DOI: 10.1016/j.cub.2016.11.013.
  • Salvioli di Fossalunga, A., Lipuma, J., Venice, F., Dupont, L., and Bonfante, P. (2017). The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin-antitoxin systems during the life cycle of its host. ISME J. DOI: 10.1038/ismej.2017.84

2016

  • Belmondo, S., Calcagno, C., Genre, A., Puppo, A., Pauly, N., and Lanfranco, L. (2016). NADPH oxidases in the arbuscular mycorrhizal symbiosis. Plant Signal Behav. DOI: 10.1080/15592324.2016.1165379
  • Damiani I., Drain A., Guichard M., Balzergue S., Boscari A., Boyer J-C, Brunaud V., Cottaz S., Rancurel C., Da Rocha M., Fizames C., Fort S., Gaillard I., Danchin E.G.J., Maillol V., Rouached H., Samain E., Su Y-H, Thouin J., Touraine B., Puppo A., Frachisse J-M, Pauly N., Sentenac H. (2016). Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks. Front. Plant Sci. 7, 794. DOI: 10.3389/fpls.2016.00794
  • Damiani I, Pauly N, Puppo A, Brouquisse R and Boscari A (2016) Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume – Rhizobium Symbiotic Interaction. Front. Plant Sci. 7:454. doi: 10.3389/fpls.2016.00454
  • El Msehli S., Rima N., Sghaier H., Aschi-Smiti S., Brouquisse R. (2016) Impact of hypoxia on nodulation and growth of the legume plant Medicago truncatula in symbiosis with Sinorhizobium meliloti Int J Curr Res Biosci Plant Biol 3:53-60
  • Hichri  I., Boscari A., Meilhoc E., CATALA M., BARRENO E., Bruand C., LANFRANCO L., Brouquisse R. (2016) Nitric oxide: a multi-task player in plant-microorganism symbioses. In: L Lamattina & C. Garcia-Mata (eds.), Gasotransmitters in plants. Signaling and communication in plants. pp 239-268. DOI 10.1007/978-3-319-40713-5_12
  • Hichri, I., Meilhoc, E., Boscari, A., Bruand, C., Frendo, P., and Brouquisse, R. (2016). Chapter Ten - Nitric Oxide: Jack-of-All-Trades of the Nitrogen-Fixing Symbiosis? in Advances in Botanical Research, D. Wendehenne, ed. (Academic Press), pp. 193–218.
  • Hichri, I., Muhovski, Y., Clippe, A., Žižková, E., Dobrev, P. I., Motyka, V., and Lutts, S. (2016) SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ,39: 62–79. doi: 10.1111/pce.12591.
  • Thalineau E, Truong H-N, Berger A, Fournier C, Boscari A, Wendehenne D and Jeandroz S (2016) Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity. Front. Plant Sci. 7:472. doi: 10.3389/fpls.2016.00472

2015

  • Baldacci-Cresp, F., MickaëlMaucourt, Deborde, C., Pierre, O., AnnickMoing, Brouquisse, R., Favery, B., and Frendo, P. Maturation of nematode-induced galls in Medicago truncatula is related to water status and primary metabolism modifications. Plant Science. DOI: 10.1016/j.plantsci.2014.12.01
  • Belmondo, S., Calcagno, C., Genre, A., Puppo, A., Pauly, N., and Lanfranco, L. (2015). The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta. DOI: 10.1007/s00425-015-2407-0
  • Hédiji, H., Djebali, W., Belkadhi, A., Cabasson, C., Moing, A., Rolin, D., Brouquisse, R., Gallusci, P., and Chaïbi, W. (2015). Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. South African Journal of Botany 97, 176–181. DOI: 10.1016/j.sajb.2015.01.010
  • Hichri, I., Boscari, A., Castella, C., Rovere, M., Puppo, A., and Brouquisse, R. (2015). Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J. Exp. Bot. erv051. DOI: 10.1093/jxb/erv051
  • Žižková, E., Dobrev, P.I., Muhovski, Y., Hošek, P., Hoyerová, K., Haisel, D., Procházková, D., Lutts, S., Motyka, V., and Hichri, I. (2015). Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biology 15, 85. DOI: 10.1186/s12870-015-0415-7

2014

  • Hopkins, J., Pierre, O., Kazmierczak, T., Gruber, V., Frugier, F., Clement, M., Frendo, P., Herouart, D., and Boncompagni, E. (2014). MtZr1, A Praf Protein, is Involved in the Development of Roots and Symbiotic Root-nodules in Medicago Truncatula. Plant, Cell & Environment 37, 658-669 10.1111/pce.12185.
  • Lipuma, J., Cinege, G., Bodogai, M., Oláh, B., Kiers, A., Endre, G., Dupont, L., and Dusha, I. (2014). A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa. Environ. Microbiol. DOI: 10.1111/1462-2920.12608
  • Pierre, O., Hopkins, J., Combier, M., Baldacci, F., Engler, G., Brouquisse, R., Hérouart, D., and Boncompagni, E. (2014). Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytologist. 202(3), 849-63 DOI: 10.1111/nph.12717.
  • Ribeiro, C.W., Alloing, G., Mandon, K., and Frendo, P. Redox regulation of differentiation in symbiotic nitrogen fixation. Biochimica et Biophysica Acta (BBA) - General Subjects. DOI: 10.1016/j.bbagen.2014.11.018

2013

  • Andrio E, Marino D, Marmeys A, Dunoyer de Segonzac M, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N. (2013) Hydrogen peroxide-regulated genes in the Medicago truncatulaSinorhizobium meliloti symbiosis. New Phytologist, 198, 179-89
  • Benyamina, S.M., Baldacci-Cresp F., Couturier J., Chibani K., Hopkins J., Bekki A., de Lajudie P., Rouhier N., Jacquot JP, Alloing G., Puppo A. and Frendo P. Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation. Environnemental Microbiology. (2013) 15(3):795-810. DOI:10.1111/j.1462-2920.2012.02835.x
  • Bonneau L., S. Huguet, D. Wipf, N. Pauly and H.-N. Truong (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatulaNew Phytologist. DOI: 10.1111/nph.12234
  • Boscari, A. del Giudice, J., Ferrarini, A., Venturini, L., Zaffini, A.L., Delledonne, M., Puppo, A. (2013) Expression Dynamics of the Medicago truncatula Transcriptome during the Symbiotic Interaction with Sinorhizobium meliloti: Which Role for Nitric Oxide? Plant Physiol. 161, 425–439.
  • Boscari, A., Meilhoc, E., Bruand, C., Puppo, A., and Brouquisse, R. (2013). Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate? Front. Plant Sci. 4, 384.
  • Frendo, P., Baldacci-Cresp, F., Benyamina, S.M., and Puppo, A. (2013). Glutathione and plant response to biotic environment. Free Radic. Biol. Med. 10.1016/j.freeradbiomed.2013.07.035
  • Frendo, P., Matamoros, M.A., Alloing, G., and Becana, M. (2013). Thiol-based redox signaling in the nitrogen-fixing symbiosis. Front. Plant Sci. 4, 376.
  • Pierre, O., Engler, G., Hopkins, J., Brau, F., Boncompagni, E., and Hérouart, D. (2013). Peribacteriod space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell Environ. 36(11):2059-70
  • Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R. (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume – Rhizobium and mycorrhizal symbioses. Antioxidant and Redox Signaling. DOI: 10.1089/ars.2012.5136

2012

  • Baldacci-Cresp F., Chang C., Maucourt M., Deborde C., Hopkins J., Lecomte P., Brouquisse R., Moing A., Abad P., Hérouart D., Puppo A., Favery B. and Frendo P. (2012) (homo)glutathione Deficiency Impairs Root-knot. Nematode Development in Medicago truncatula. PloS Pathogens, 8: e1002471.
  • Cam Y., Pierre O., Boncompagni E., Hérouart D., Meilhoc E. and Bruand C. (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytolologist,  196, 548–560.
  • Damiani, I. ; Baldacci, F. ; Hopkins, J. ; Andrio, É. ; Balzergue, S. ; Lecomte, P. ; Puppo, A. ; Abad, P. ; Favery, B. ; Hérouart, D. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytologist. 2012, 194 (2) : 511-522
  • Marino D, Dunand C, Puppo A, Pauly N. (2012) A burst of plant NADPH oxidases. Trends in Plant Sciences, 17, 9-15
  • Oger E., Marino D., Guigonis J.-M., Pauly N. and Puppo A.(2012) Sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis. J Proteomics 75, 4102-13
  • Wagner G., Charton S., Lariagon C., Laperche A., Lugan R.,  Hopkins J., Frendo P., Bouchereau A., Delourme R., Gravot A. et Manzanares-Dauleux M.A. (2012) Metabotyping: a new approach to investigate rapeseed (1 Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. Molecular Plant Microbe Interactions,25, 1478–1491.

Archives 2011-2006

Liste des publications de 2011 à 2006
Lire la suite