Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo GAFL Logo GAFL

Home page GAFL

Axis 3: Genetic and functional bases of resistances to aphids

We characterize quantitative and qualitative resistances to aphids in the genetic diversity of peach (to the green peach aphid Myzus persicae) and melon (to Aphis gossypii) and we aims to develop durable resistances by studying their genetic and functional bases. We focus on qualitative resistances (R genes) that confer both resistance to aphids and to viruses that they transmit, in peach (Rm gene) and melon (Vat gene):

  • we characterize R genes and their homologs involved in the resistance (cloning and functional validation) and aphids effectors recognized by R genes. We study the resistance processes triggered by the recognition,
  • we assess the aphid adaptation to resistances (avoidance of recognition and adaptation to triggered processes). We aim to improve durability by modeling to define traits related to durability,  by identifying QTLs for these traits and ultimately, by combining R and QTL genes,
  • we develop biopesticides from secondary metabolites of peach involved in the resistance to the green peach aphid, which we found to be highly toxic to aphids

Relevant Publications

Chovelon, V., R. Feriche-Linares, G. Barreau, J. Chadoeuf, C. Callot, V. Gautier, M.-C. Le Paslier, A. Berard, P. Faivre-Rampant, J. Lagnel, N. Boissot (2021). "Building a cluster of NLR genes conferring resistance to pests and pathogens: the story of the Vat gene cluster in cucurbits." Horticulture Research 8(1). [link]

Mistral, P; Vanlerberghe-Masutti, F; Elbet S; Boissot, N (2021) Aphis gossypii/Aphis frangulae collected worldwide: Microsatellite markers data and genetic cluster assignment. Data in Brief 36. [link]

Monnot, S.; Desaint, H.; Mary-Huard, T.; Moreau, L.; Schurdi-Levraud, V.; Boissot, N. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells 2021, 10, 3080. [link]

Schoeny, A., A. Desbiez, et al. (2017). Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Research 241: 105-115. [link]

Boissot, N., A. Schoeny, et al. (2016). Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects." Frontiers in Plant Science 7: 1420. [link]

Boissot, N., S. Thomas, et al. (2016). NBS-LRR-mediated resistance triggered by aphids: viruses do not adapt; aphids adapt via different mechanisms BMC Plant Biology 16: 25. [link]

Thomas, S., F. Vanlerberghe-Masutti, et al. (2016). Insight into the durability of aphid resistance from the demo-genetic study of Aphis gossypii populations in melon crops. Evolutionary Applications 9(6): 756-768. [link]

Dogimont, C., Chovelon, V., Pauquet, J., Boualem, A. and Bendahmane, A. (2014) The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J, 80, 993-1004. [link]