Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal LOGO GAFL Logo GAFL

Home page GAFL

Thesis of Leandro De Oliveira Lino

"Study of the genetic variability of peach in susceptibility to brown rot during fruit development in relation with changes in physical and biochemical characteristics of the fruit"

Pouriture brune pêche
On Tuesday, November 15, 2016 at 9 am in the Garance room of INRA Avignon, Domaine Saint-Paul, Agroparc Site

Brown rot (BR) in peach fruit caused by the fungus Monilinia spp. is a common disease that can provoke as much as 30 to 40% losses of crop. Currently, all cultivated peaches are more or less sensitive to BR. No other alternative than chemical treatment is available, hence fungicide applications are required until pre-harvest. Such applications are damaging the environment and may let residues in fruits. A review of literature was accomplished to compile the knowledge scattered in the literature from many years.

The aim of this study is to investigate the factors of resistance of the fruit to M. laxa at different stages of fruit growth and their genetic control by studying contrasted genotypes and an interspecific peach progeny.

The first focus was made on few cultivars to study the evolution of sensibility of fruits to M. laxa during their development in relation with structural and biochemical characteristics of the fruit, e.g. cuticular conductance, micro-cracks and fruit surface compounds. Some compounds were detected for the first time on peach fruit. The results confirmed that during the stage I immature fruits are susceptible to BR. Fruit cuticular conductance was high probably due to high density of stomata and thin cuticule in formation. In contrary, at pit hardening stage fruits were resistant, cuticular conductance was low and the levels of surface compounds exhibit a peak. When maturity approaches, fruit become susceptible again. With rapid development of the fruit during this stage, the surface compounds were diluted and micro-cracks often appear which resulted in high cuticular conductance. 

At stage I we explored the different physical characteristics of the immature fruit in relation with susceptibility to M. laxa. A hundred of individuals of an interspecific peach progeny called BC2 were characterized through laboratory infection, monitoring of fruit transpiratory losses and estimating stomata density (only for nectarines). Unexpected symptoms (not progressing ‘clear spot’) were observed. The cuticular conductance was significantly linked to the likelihood of infection, but the stomata number had no effect on the likelihood of infection. QTL controlling fruit resistance to BR, cuticular conductance and stomata number have been identified and some co-locations observed.

 At maturity stage we investigated the genetic control of BR resistance together with biochemical compounds of fruit epidermis. For three years, mature fruits from the BC2 progeny were infected with two modalities of infection: spray until runoff in the orchard to measure infection probability and drop in the laboratory conditions in order to observe the characters of beginning, progression and speed of infection. The BC2 progeny displayed high variability for BR resistance. Despite low stability between years, genotypes with high level of resistance were identified. In addition in 2015, we explored the variation in epidermis compounds of fruit within the BC2 progeny. Phenolic compounds, terpenoids and derivatives were quantified by HPLC. The relationship between BR resistance and presence and/or levels of certain epidermis compounds and the genetic control of these compounds were investigated.

BR of peach fruit is a complex problem which is still far from resolved. Progress has been made in the knowledge of structural and biochemical characteristics involved in BR resistance and regions of the genome that could confer certain disease tolerance have been detected. Further work is needed to develop molecular markers for marker assisted selection. The results obtained suggest that solutions for the future lie in associations of tolerant cultivars _ less susceptible to micro-cracks and with high content of epidermis compounds potential inhibitor of the fungus development _ with cultural practices reducing both risks of fruit cracking and occurrence of micro-climatic conditions favorable to BR spread and sporulation.