Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo CAPTE


Zone de texte éditable et éditée et rééditée

Journal articles & proceedings

Find links to articles dealing with CAN-EYE

Adamek, M., Corre, M.D. and D. Hölscher, 2009. Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. Journal of Tropical Ecology (2009), 25:637-647 [URL]

Beget, ME, Garcia, AG, Kandus, M., Di Bella C., Salerno, J-C., 2010. Estimación del índice de área foliar en maíz a partir de fotos digitales tomadas a un ángulo cenital de 57.5°. IX Congreso Nacional de Maíz - 17-19 noviembre 2010, Rosario, Argentina. [pdf]

Camacho, F., Cernicharo, J., Lacaze, R., Baret, F., & Weiss, M. 2013. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sensing of Environment, 137, 310-329

Chianucci, F., and A. Cutini 2012. Digital hemispherical photography for estimating forest canopy properties: current controversies and opportunities, iForest - Biogeosciences and Forestry, 5(6), 290-295. [URL]

Claverie, M., E. F. Vermote, M. Weiss, F. Baret, O. Hagolle, and V. Demarez 2013. Validation of coarse spatial resolution LAI and FAPAR time series over cropland in southwest France, Remote Sensing of Environment, 139(0), 216-230.

Davi, H., Baret, F., Huc, R. and Dufrêne, E., 2008. Effect of thinning on LAI variance in heterogeneous forests. Forest Ecology and Management, 256(5): 890-899. [URL]

Demarez, V., Duthoit, S., Baret, F., Weiss, M. and Dedieu, G., 2008. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agricultural and Forest Meteorology, 148(4): 644-655. [URL]

Duthoit, S. 2006. Prise en compte de l'agrégation des cultures dans la simulation du transfert radiatif: importance pour l'estimation de l'indice foliaire (LAI) de la parcelle au payasage. Thèse de doctorat. Université Paul Sabatier, Toulouse [URL (French)], 202p.

Duveiller, G. and Defourny, P., 2010. Batch processing of hemispherical photography using object-based image analysis to derive canopy biophysical variables, in Addink, E.A. and F.M.B. Van Coillie (Eds.) Proceedings of GEOBIA 2010-Geographic Object-Based Image Analysis. Ghent University, Ghent, Belgium, 29 June – 2 July. ISPRS Vol.No. XXXVIII-4/C7, Archives ISSN No 1682-1777 [URL]

Ellis, C.R. and Pomeroy, J.W., 2007. Estimating sub-canopy shortwave irradiance to melting snow on forested slopes. Hydrological Processes, 21(19): 2581-2593.[URL]

España, M.L., Baret, F. and Weiss, M., 2008. Slope correction for LAI estimation from gap fraction measurements. Agricultural and Forest Meteorology, 148(10): 1553-1562. [URL]

Facchi, A., Baroni,G., Boschetti, M. and Gandolfi, C., 2010. Comparing optical and direct methods for leaf area index determination in a maize crop. Journal of agricultural engineering, 41(1):33-40 [URL]

Fang, H., Li, W., Wei, S., & Jiang, C. 2014. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agricultural and Forest Meteorology, 198, 126-141.[URL]

Fernandes, R., Plummer, S., Nightingale, J., Baret, F., Camacho, F., Fang, H., Garrigues, S., Gobron, N., Lang, M., Lacaze, R., LeBlanc, S., Meroni, M., Martinez, B., Nilson, T., Pinty, B., Pisek, J., Sonnentag, O., Verger, A., Welles, J., Weiss, M., Widlowski, J.-L., Schaepman-Strub, G., Roman, M., & Nickeson, J.  2014. Global Leaf Area Index Product Validation Good Practices - Version 2.0

Garrigues, S., Shabanov, N.V., Swanson, K., Morisette, J.T., Baret, F., & Myneni, R.B., 2008. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, 148(8-9): 1193-1209.[URL]

Garrigues, S., Lacaze, R., Baret, F., Morisette, J.T., Weiss, M., Nickeson, J.E., Fernandes, R., Plummer, S., Shabanov, N.V., Myneni, R.B., Knyazikhin, Y. and Yang, W., 2008. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res., 113, G02028: [URL]

Gonsamo, A. and P. Pellika, 2009. A new look at top-of-canopy gap fraction measurements from high resolution airborne imagery. EARSeL eproceedings, 8(1). [URL]

Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., & Ewers, R. M. 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201, 187-195 [URL].

Homolová, L., Z. Malenovský, J. Hanuš, I. Tomášková, M. Dvoráková, R. Pokorný. 2007. Comparison of different techniques to map leaf area index of norway spruce forest canopy. ISPRS, Davos, Switzerland. 1681-1777 [URL]

Jonckheere, I. , Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M. and F. Baret, 2004. Reviews of methods for in situ leaf area index determination. Part I. Theories, sensors, and hemispherical photography. Agric. For. Meteorol., 121: 19-35. [URL]

Khabba, S., Duchemin B., Hadria R., Ezzahar, J., Chehbouni A., Lahrouni A., and L. Hanich, 2009. Evaluation of digital hemispherical photography and plant canopy analyser for measuring Vegetation area index of orange orchards. Journal of Agronomy8, 2 (2009) 67-72 [URL]

Li, W., Weiss, M., Waldner, F., Defourny, P., Demarez, V., Morin, D., ... & Baret, F. 2015. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and landsat sensors: evaluation of the consistency and comparison with ground measurements. Remote Sensing, 7(11), 15494-15516.[URL]

Liu, C., Kang, S., Li, F., Li, S., & Du, T. 2013. Canopy leaf area index for apple tree using hemispherical photography in arid region. Scientia Horticulturae, 164, 610-615.[URL]

López-Lozano, R., Baret, F., García de Cortázar-Atauri, I., Bertrand, N. and Casterad, M.A., 2009. Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agricultural and Forest Meteorology, 149(8): 1307-1316.[URL]

Orlando, F., Movedi, E., Paleari, L., Gilardelli, C., Foi, M., Dell'Oro, M., & Confalonieri, R. 2015. Estimating leaf area index in tree species using the PocketLAI smart app. Applied Vegetation Science, 18(4), 716-723 [URL]

Martinez B., Baret, F. Camacho-de Coca, F., Garcia-Haro, F.J., Verger, A. et al., 2004. Validation of MSG vegetation products: part I. Field retrieval of LAI and FVC from hemispherical photographs, Proc. SPIE 5568, Remote Sensing for Agriculture, Ecosystems, and Hydrology VI, 57 [URL]

Mengesha, T. Kooistra, L. de Bruin, S. Zurita Milla, R. and M. Schaepman, 2005. methodology comparison of quantitative LAI retrieval using imaging spectroscopy and geo-spatial interpolation in a soft wood forest. Proceedings of 4th EARSeL Workshop on Imaging Spectroscopy. New quality in environmental studies, 641- 651Zagajewski B., Sobczak M., Wrzesień M., (eds). [URL]

Mougin, E., V. Demarez, M. Diawara, P. Hiernaux, N. Soumaguel, and A. Berg, 2014. Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali), Agricultural and Forest Meteorology, 198–199, 155-167.[URL]

Nijland, W., Addink, E. A., De Jong, S. M., & Van der Meer, F. D. 2009. Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sensing of Environment, 113(4), 771-780.[URL]

Propastin, P. A. 2009. Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia. Remote Sensing of Environment, 113(10), 2234-2242.[URL]

Propastin, P., & Erasmi, S. 2010. A physically based approach to model LAI from MODIS 250m data in a tropical region. International Journal of Applied Earth Observation and Geoinformation, 12(1), 47-59.[URL]

Rossini, M., Panigada, C., Meroni, M. and R. Colombo, 2006. Assesment of oak forest condition based on leaf biochemical variables and chlorophyll fluorescence. Tree Physioloy, 26:1487-1496.[URL]

Sandmann, M., Graefe, J., & Feller, C. 2013. Optical methods for the non-destructive estimation of leaf area index in kohlrabi and lettuce. Scientia horticulturae, 156, 113-120.[URL]

Verger, A., Martinez, B., Camacho-de Coca, F., & Garcia-Haro, F.J. 2009. Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area. International Journal of Remote Sensing, 30, 2685-2704.[URL]

Weiss, M., Baret, F., Smith, G.J. and Jonckheere, I., 2004. Methods for in situ leaf area index measurement, part II: from gap fraction to leaf area index: retrieval methods and sampling strategies. Agric. For. Meteorol., 121: 17-53. [URL]

White, H.P, Young, E. R. 2007. Comparison of in situ LAI retrieval of two instruments of four mature agricultural crops. Geomatic Canada, Technical Note 1, 9 pages.[URL]

Woodgate, W., Soto-Berelov, M., Suarez, L., Jones, S., Hill, M., Wilkes, P., Axelsson, C., Haywood, A., & Mellor, A. 2012. Searching for the Optimal Sampling Design for Measuring LAI in an Upland Rainforest. In, Geospatial Science Research Symposium GSR2. Melbourne, Australia [URL]

Zhao, D., Lv, M., Wang, P., Yang, T., & An, S. 2014. Can the plant area index of a submerged vegetation canopy be estimated using digital hemispherical photography?. Agricultural and Forest Meteorology, 192, 69-77.[URL]

To access to the full text articles, you may need to be registered to the journal